数据集的合并(merge)或连接(join)运算是通过一个或多个键将行链接起来。
1.png
下面是多对一合并,df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则对应一行:
2.png
如果没有指定,merge就会将重叠的列名当做键,一般显式指定:
3.png
如果两个对象的列名不同,需要分别进行指定:
4.png
上面操作的结果里,lkey中的’c’和rkey中的’d’及其对应的值已经消失,这是因为默认情况下,merge做的是“inner”连接,即结果中的键是交集。连接方式是用参数how来指定,包括“left”、“right”以及“outer”。
5.png
多对多的合并操作,产生的是行的笛卡尔积:
6.png
左右连接中左边的DataFrame有3个“b”行,右边的有2个,所以最终结果有6个“b”行。连接方式只影响出现在结果中的键:
7.png
键的交集:
8.png
多个键进行合并,传入一个有列名组成的列表即可:
9.png
注意:在进行列-列连接时,DataFrame对象中的索引会丢弃。
10.png
merge函数的参数:
11.png
12.png
13.png
源码:
# coding: utf-8
# In[1]:
import numpy as np
from pandas import Series,DataFrame
import pandas as pd
# In[2]:
df1 = DataFrame({'key':['c','d','a','b','c'],'data1':range(5)})
print(df1)
# In[3]:
df2 = DataFrame({'key':['a','b','c'],'data2':range(3)})
print(df2)
# In[4]:
# 多对一合并
pd.merge(df1,df2)
# In[5]:
# 显式指定列名当做键
pd.merge(df1,df2,on='key')
# In[6]:
# 如果两个对象的列名不同,需要分别指定
df3 = DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1':range(7)})
df4 = DataFrame({'rkey':['a','b','d'],'data2':range(3)})
pd.merge(df3,df4,left_on='lkey',right_on='rkey')
# In[7]:
# 外连接求取键的并集
pd.merge(df1,df2,how='outer')
# In[8]:
# 多对多的合并
df1 = DataFrame({'key':['b','b','a','c','a','b'],'data1':range(6)})
print(df1)
# In[9]:
df2 = DataFrame({'key':['a','b','a','b','d'],'data2':range(5)})
print(df2)
# In[10]:
# 左连接
pd.merge(df1,df2,on='key',how='left')
# In[12]:
# 右连接
pd.merge(df1,df2,on='key',how='right')
# In[13]:
# 键的交集
pd.merge(df1,df2,how='inner')
# In[14]:
# 多个键合并
left = DataFrame({'key1':['foo','foo','bar'],
'key2':['one','two','one'],
'lval':[1,2,3]})
right = DataFrame({'key1':['foo','foo','bar','bar'],
'key2':['one','one','one','two'],
'rval':[4,5,6,7]})
pd.merge(left,right,on=['key1','key2'],how='outer')
# In[15]:
# 使用suffixes选项对重复列名进行处理
pd.merge(left,right,on='key1')
# In[16]:
pd.merge(left,right,on='key1',suffixes=('_left','_right'))












网友评论