t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,又叫“T 分布随机近邻嵌入算法(t-SNE)”,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来。此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化。
t-SNE是由SNE(Stochastic Neighbor Embedding, SNE; Hinton and Roweis, 2002)发展而来。我们先介绍SNE的基本原理,之后再扩展到t-SNE。最后再看一下t-SNE的实现以及一些优化。
详细内容请参考作者的网站
http://lvdmaaten.github.io/tsne/
t-SNE是目前来说效果最好的数据降维与可视化方法,但是它的缺点也很明显,比如:占内存大,运行时间长。
但是,当我们想要对高维数据进行分类,又不清楚这个数据集有没有很好的可分性(即同类之间间隔小,异类之间间隔大),可以通过t-SNE投影到2维或者3维的空间中观察一下。
如果在低维空间中具有可分性,则数据是可分的;
如果在高维空间中不具有可分性,可能是数据不可分,也可能仅仅是因为不能投影到低维空间。
t-distributed Stochastic Neighbor Embedding(t-SNE)
t-SNE(TSNE)将数据点之间的亲和力转换为概率。
原始空间中的亲和度由高斯联合概率表示,嵌入空间的亲和度由“学生t分布”表示。这使得t-SNE对局部结构特别敏感,并且与现有技术相比具有一些其他优点:
- 在单个图上显示多个尺度的结构
- 可以显示多类的、不同的、在高维空间上交错的或聚合的数据
- 显示图像中相同类的数据点的分布更发散
虽然Isomap,LLE和variants等数据降维和可视化方法,最适合展开单个连续的低维的manifold,但是t-SNE主要是关注数据的局部结构,并且对于下图所示的S曲线(不同颜色的图像表示不同类别的数据)。正是这种关注数据局部特征的方法,更有利于manifold数据的可视化。
manifold:可以称之为流形数据。像绳结一样的数据,虽然在高维空间中可分,但是在人眼所看到的低维空间中,绳结中的绳子是互相重叠的不可分的。
通过原始空间和嵌入空间的联合概率的Kullback-Leibler(KL)散度来评估可视化效果的好坏,也就是说用有关KL散度的函数作为loss函数,然后通过梯度下降最小化loss函数,最终获得收敛结果。注意,有关KL散度的loss函数不是凸函数,即具有不同初始值的多次运行将收敛于KL散度函数的局部最小值中,以致获得不同的结果。因此,尝试不同的随机数种子(Python中可以通过设置seed来获得不同的随机分布)有时候是有用的,并选择具有最低KL散度值的结果。
使用t-SNE的缺点是:
-
t-SNE的计算复杂度很高,在数百万个样本数据集中可能需要几个小时,而PCA可以在几秒钟或几分钟内完成Barnes-Hut t-SNE方法(下面讲)限于二维或三维嵌入。
-
算法是随机的,具有不同种子的多次实验可以产生不同的结果。虽然选择loss最小的结果就行,但可能需要多次实验以选择超参数。
-
全局结构未明确保留。这个问题可以通过PCA初始化点(使用init ='pca')来缓解。
一个简单的例子,输入4个3维的数据,然后通过t-SNE降维称2维的数据。
import numpy as np
from sklearn.manifold import TSNE
X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
tsne = TSNE(n_components=2)
tsne.fit_transform(X)
print(tsne.embedding_)
'''输出
[[ 3.17274952 -186.43092346]
[ 43.70787048 -283.6920166 ]
[ 100.43157196 -145.89025879]
[ 140.96669006 -243.15138245]]'''
手写数字的降维可视化
t-SNE将8*8即64维的数据降维成2维,并在平面图中显示,这里只选取了0-5,6个手写数字。
# coding='utf-8'
"""t-SNE对手写数字进行可视化"""
from time import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE
def get_data():
digits = datasets.load_digits(n_class=6)
data = digits.data
label = digits.target
n_samples, n_features = data.shape
return data, label, n_samples, n_features
def plot_embedding(data, label, title):
x_min, x_max = np.min(data, 0), np.max(data, 0)
data = (data - x_min) / (x_max - x_min)
fig = plt.figure()
ax = plt.subplot(111)
for i in range(data.shape[0]):
plt.text(data[i, 0], data[i, 1], str(label[i]),
color=plt.cm.Set1(label[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.title(title)
return fig
def main():
data, label, n_samples, n_features = get_data()
print('Computing t-SNE embedding')
tsne = TSNE(n_components=2, init='pca', random_state=0)
t0 = time()
result = tsne.fit_transform(data)
fig = plot_embedding(result, label,
't-SNE embedding of the digits (time %.2fs)'
% (time() - t0))
plt.show(fig)
if __name__ == '__main__':
main()
1.SNE
1.1基本原理
SNE是通过仿射(affinitie)变换将数据点映射到概率分布上,主要包括两个步骤:
SNE构建一个高维对象之间的概率分布,使得相似的对象有更高的概率被选择,而不相似的对象有较低的概率被选择。
SNE在低维空间里在构建这些点的概率分布,使得这两个概率分布之间尽可能的相似。
我们看到t-SNE模型是非监督的降维,他跟kmeans等不同,他不能通过训练得到一些东西之后再用于其它数据(比如kmeans可以通过训练得到k个点,再用于其它数据集,而t-SNE只能单独的对数据做操作,也就是说他只有fit_transform,而没有fit操作)
1.2 SNE原理推导
2.t-SNE
尽管SNE提供了很好的可视化方法,但是他很难优化,而且存在”crowding problem”(拥挤问题)。后续中,Hinton等人又提出了t-SNE的方法。与SNE不同,主要如下:
- 使用对称版的SNE,简化梯度公式
- 低维空间下,使用t分布替代高斯分布表达两点之间的相似度
t-SNE在低维空间下使用更重长尾分布的t分布来避免crowding问题和优化问题。在这里,首先介绍一下对称版的SNE,之后介绍crowding问题,之后再介绍t-SNE。
2.1 Symmetric SNE
2.2 Crowding问题
2.3 t-SNE
2.4 算法过程
t-sne_optimise.gif
t-sne_optimise.gif插图绘制
import numpy as np
from numpy.linalg import norm
from matplotlib import pyplot as plt
plt.style.use('ggplot')
def sne_crowding():
npoints = 1000 # 抽取1000个m维球内均匀分布的点
plt.figure(figsize=(20, 5))
for i, m in enumerate((2, 3, 5, 8)):
# 这里模拟m维球中的均匀分布用到了拒绝采样,
# 即先生成m维立方中的均匀分布,再剔除m维球外部的点
accepts = []
while len(accepts) < 1000:
points = np.random.rand(500, m)
accepts.extend([d for d in norm(points, axis=1)
if d <= 1.0]) # 拒绝采样
accepts = accepts[:npoints]
ax = plt.subplot(1, 4, i+1)
if i == 0:
ax.set_ylabel('count')
if i == 2:
ax.set_xlabel('distance')
ax.hist(accepts, bins=np.linspace(0., 1., 50))
ax.set_title('m=%s' %m)
plt.savefig("./images/sne_crowding.png")
x = np.linspace(0, 4, 100)
ta = 1 / (1 + np.square(x))
tb = np.sum(ta) - 1
qa = np.exp(-np.square(x))
qb = np.sum(qa) - 1
def sne_norm_t_dist_cost():
plt.figure(figsize=(8, 5))
plt.plot(qa/qb, c="b", label="normal-dist")
plt.plot(ta/tb, c="g", label="t-dist")
plt.plot((0, 20), (0.025, 0.025), 'r--')
plt.text(10, 0.022, r'$q_{ij}$')
plt.text(20, 0.026, r'$p_{ij}$')
plt.plot((0, 55), (0.005, 0.005), 'r--')
plt.text(36, 0.003, r'$q_{ij}$')
plt.text(55, 0.007, r'$p_{ij}$')
plt.title("probability of distance")
plt.xlabel("distance")
plt.ylabel("probability")
plt.legend()
plt.savefig("./images/sne_norm_t_dist_cost.png")
if __name__ == '__main__':
sne_crowding()
sne_norm_t_dist_cost()
2.5 不足
主要不足有四个:
-
主要用于可视化,很难用于其他目的。比如测试集合降维,因为他没有显式的预估部分,不能在测试集合直接降维;比如降维到10维,因为t分布偏重长尾,1个自由度的t分布很难保存好局部特征,可能需要设置成更高的自由度。
-
t-SNE倾向于保存局部特征,对于本征维数(intrinsic dimensionality)本身就很高的数据集,是不可能完整的映射到2-3维的空间
-
t-SNE没有唯一最优解,且没有预估部分。如果想要做预估,可以考虑降维之后,再构建一个回归方程之类的模型去做。但是要注意,t-sne中距离本身是没有意义,都是概率分布问题。
-
训练太慢。有很多基于树的算法在t-sne上做一些改进
3 t-sne的完整代码实现
# coding utf-8
'''
代码参考了作者Laurens van der Maaten的开放出的t-sne代码, 并没有用类进行实现,主要是优化了计算的实现
'''
import numpy as np
def cal_pairwise_dist(x):
'''计算pairwise 距离, x是matrix
(a-b)^2 = a^w + b^2 - 2*a*b
'''
sum_x = np.sum(np.square(x), 1)
dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x)
return dist
def cal_perplexity(dist, idx=0, beta=1.0):
'''计算perplexity, D是距离向量,
idx指dist中自己与自己距离的位置,beta是高斯分布参数
这里的perp仅计算了熵,方便计算
'''
prob = np.exp(-dist * beta)
# 设置自身prob为0
prob[idx] = 0
sum_prob = np.sum(prob)
perp = np.log(sum_prob) + beta * np.sum(dist * prob) / sum_prob
prob /= sum_prob
return perp, prob
def seach_prob(x, tol=1e-5, perplexity=30.0):
'''二分搜索寻找beta,并计算pairwise的prob
'''
# 初始化参数
print("Computing pairwise distances...")
(n, d) = x.shape
dist = cal_pairwise_dist(x)
pair_prob = np.zeros((n, n))
beta = np.ones((n, 1))
# 取log,方便后续计算
base_perp = np.log(perplexity)
for i in range(n):
if i % 500 == 0:
print("Computing pair_prob for point %s of %s ..." %(i,n))
betamin = -np.inf
betamax = np.inf
perp, this_prob = cal_perplexity(dist[i], i, beta[i])
# 二分搜索,寻找最佳sigma下的prob
perp_diff = perp - base_perp
tries = 0
while np.abs(perp_diff) > tol and tries < 50:
if perp_diff > 0:
betamin = beta[i].copy()
if betamax == np.inf or betamax == -np.inf:
beta[i] = beta[i] * 2
else:
beta[i] = (beta[i] + betamax) / 2
else:
betamax = beta[i].copy()
if betamin == np.inf or betamin == -np.inf:
beta[i] = beta[i] / 2
else:
beta[i] = (beta[i] + betamin) / 2
# 更新perb,prob值
perp, this_prob = cal_perplexity(dist[i], i, beta[i])
perp_diff = perp - base_perp
tries = tries + 1
# 记录prob值
pair_prob[i,] = this_prob
print("Mean value of sigma: ", np.mean(np.sqrt(1 / beta)))
return pair_prob
def pca(x, no_dims = 50):
''' PCA算法
使用PCA先进行预降维
'''
print("Preprocessing the data using PCA...")
(n, d) = x.shape
x = x - np.tile(np.mean(x, 0), (n, 1))
l, M = np.linalg.eig(np.dot(x.T, x))
y = np.dot(x, M[:,0:no_dims])
return y
def tsne(x, no_dims=2, initial_dims=50, perplexity=30.0, max_iter=1000):
"""Runs t-SNE on the dataset in the NxD array x
to reduce its dimensionality to no_dims dimensions.
The syntaxis of the function is Y = tsne.tsne(x, no_dims, perplexity),
where x is an NxD NumPy array.
"""
# Check inputs
if isinstance(no_dims, float):
print("Error: array x should have type float.")
return -1
if round(no_dims) != no_dims:
print("Error: number of dimensions should be an integer.")
return -1
# 初始化参数和变量
x = pca(x, initial_dims).real
(n, d) = x.shape
initial_momentum = 0.5
final_momentum = 0.8
eta = 500
min_gain = 0.01
y = np.random.randn(n, no_dims)
dy = np.zeros((n, no_dims))
iy = np.zeros((n, no_dims))
gains = np.ones((n, no_dims))
# 对称化
P = seach_prob(x, 1e-5, perplexity)
P = P + np.transpose(P)
P = P / np.sum(P)
# early exaggeration
P = P * 4
P = np.maximum(P, 1e-12)
# Run iterations
for iter in range(max_iter):
# Compute pairwise affinities
sum_y = np.sum(np.square(y), 1)
num = 1 / (1 + np.add(np.add(-2 * np.dot(y, y.T), sum_y).T, sum_y))
num[range(n), range(n)] = 0
Q = num / np.sum(num)
Q = np.maximum(Q, 1e-12)
# Compute gradient
PQ = P - Q
for i in range(n):
dy[i,:] = np.sum(np.tile(PQ[:,i] * num[:,i], (no_dims, 1)).T * (y[i,:] - y), 0)
# Perform the update
if iter < 20:
momentum = initial_momentum
else:
momentum = final_momentum
gains = (gains + 0.2) * ((dy > 0) != (iy > 0)) + (gains * 0.8) * ((dy > 0) == (iy > 0))
gains[gains < min_gain] = min_gain
iy = momentum * iy - eta * (gains * dy)
y = y + iy
y = y - np.tile(np.mean(y, 0), (n, 1))
# Compute current value of cost function
if (iter + 1) % 100 == 0:
if iter > 100:
C = np.sum(P * np.log(P / Q))
else:
C = np.sum( P/4 * np.log( P/4 / Q))
print("Iteration ", (iter + 1), ": error is ", C)
# Stop lying about P-values
if iter == 100:
P = P / 4
print("finished training!")
return y
if __name__ == "__main__":
# Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset.
X = np.loadtxt("mnist2500_X.txt")
labels = np.loadtxt("mnist2500_labels.txt")
Y = tsne(X, 2, 50, 20.0)
from matplotlib import pyplot as plt
plt.scatter(Y[:,0], Y[:,1], 20, labels)
plt.show()













网友评论