19世纪的英国科学家高尔顿,他是一名好奇心满满的数学家。他有个愿望,要把遗传问题量化。首先,他从父亲与孩子的身高入手,因为这是组比较容易采集的数据。他拿出一张白纸,用尺子画出坐标轴,横轴表示孩子的身高,纵轴表示父亲的,每一对父子在坐标图上就是一个黑点。他在收集了大量的数据之后,发现了“散点图”。
让我们先做一下假设:如果孩子的身高完全取决于父亲的身高的话,这张图就会变成一条直线。如果孩子的身高与父亲毫无关系,那么我们会得到一章杂乱无章的图,充满了随机的小黑点。但实际上呢,高尔顿得到的既不是直线图,也不是杂乱无章的图,而是一张散点图,也就是说,它呈现出一个近似椭圆的形状,其中心对应的就是父母与孩子正好都是平均身高的那个点。也就是说,不管父母的身高是高是矮,大数据表示,孩子们的身高都是逼近普通人的身高,也就是回归平均值的。
他在1889年《自然的遗传》一书中是这么总结的:我认为,从整体情况看,成年子女的身高与他们的父母相比更趋于平均水平。所以如果你个子很矮也不必担心,因为你的后代是有很大可能会达到正常人身高的。那我们到底还受不受遗传学的影响呢?高尔顿发现,遗传还是影响我们,但是通过相关函数发挥作用的。
高尔顿的椭圆形有胖有瘦,如果离心率大,则意味着遗传因素的作用大,椭圆形就胖,回归平均值的作用小,相反的话,回归平均值就起到了决定性作用。高尔顿把这个量称为“相关函数”。高尔顿就此推论,不仅身高,人们的智力水平肯定也会如此。不管父母的智商如何高,后代不可能永远聪明下去,他们必然受到回归平均值的影响,成为普通人中的一员。这一理论后来被大数据的分析证明了,事实上,生活中随着时间产生变化的任何东西,几乎都会受到回归效应的影响。










网友评论