美文网首页
S6-算法-普利姆算法【2021-02-08】

S6-算法-普利姆算法【2021-02-08】

作者: 鄙人_阿K | 来源:发表于2020-11-26 12:43 被阅读0次

总目录:地址如下看总纲

https://www.jianshu.com/p/929ca9e209e8

1、应用场景-修路问题

(1)有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
(2)各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
(3)问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
常规思路: 将10条边,连接即可,但是总的里程数不是最小
正确思路:尽可能的选择少的路线,并且每条路线最小,保证总里程数最少


image.png

2、最小生成树

修路问题本质就是就是最小生成树问题, 最小生成树(Minimum Cost Spanning Tree),简称MST

(1)给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
(2)N个顶点,一定有N-1条边
(3)包含全部顶点
(4)N-1条边都在图中
(5)求最小生成树的算法主要是普里姆�算法和克鲁斯卡尔算法


image.png

3、普利姆算法

(1)普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图

(2)文字思路:看不懂也无所谓,概述而已,详细看图解
①设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
②若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1(既被访问过了)
③若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
④重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边

(3)图解思路:清晰一些,关于理解


image.png

4、代码

public class PrimAlgorithm {
    public static void main(String[] args) {
        // 测试图创建
        char[] data = new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
        int[][] weight = new int[][]{
                {10000, 5, 7, 10000, 10000, 10000, 2},
                {5, 10000, 10000, 9, 10000, 10000, 3},
                {7, 10000, 10000, 10000, 8, 10000, 10000},
                {10000, 9, 10000, 10000, 10000, 4, 10000},
                {10000, 10000, 8, 10000, 10000, 5, 4},
                {10000, 10000, 10000, 4, 5, 10000, 6},
                {2, 3, 10000, 10000, 4, 6, 10000},};

        //创建MGraph对象
        MGraph graph = new MGraph (verxs);
        //创建一个MinTree对象
        MinTree minTree = new MinTree ( );
        minTree.createGraph (graph, verxs, data, weight);
        //输出
        minTree.showGraph (graph);
        //测试普利姆算法
        minTree.prim (graph, 0);
    }


}


// 构建最小生成树对象 --- 村庄图
class MinTree {

    /**
     * 构建图的邻接矩阵(初始化)
     *
     * @param graph  图对象
     * @param verxs  图对应的顶点个数
     * @param data   图的各个顶点编号,这里不是权值(编号作为表示,不用于计算;权值通常用于计算,个人理解--阿K)
     * @param weight 图的邻接矩阵
     */
    public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {

        for (int i = 0; i < verxs; i++) {// 遍历各个顶点
            graph.data[i] = data[i];
            for (int j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }

    // 显示图的邻接矩阵
    public void showGraph(MGraph graph) {
        for (int[] link : graph.weight) {
            System.out.println (Arrays.toString (link));
        }
    }

    /**
     * @param graph 图
     * @param v     表示从图的第几个顶点开始生成 'A'-0,'B'-1 ...
     */
    public void prim(MGraph graph, int v) {
        // visited[] 标记节点(顶点)是否被访问过
        int[] visited = new int[graph.verxs];

        // 初始化,默认 0 是未访问过,可以不写,但是我愿意!
        for (int i = 0; i < visited.length; i++) {
            visited[i] = 0;
        }

        // 把当前节点标记为已访问过
        visited[v] = 1;
        // h1 and h2 record double node of subscript(邻接矩阵是二位数组,对应着 double subscript)
        int h1 = -1;
        int h2 = -1;
        // 将 minWeight 初始化成大数 10000,后面遍历过程中会被替换(为什么初始化成大数,因为这样默认是走不通的 根据案例设计)
        int minWeight = 10000;// 边(最小权值)

        // 核心部分:
        for (int k = 1; k < graph.verxs; k++) {// 公式中 顶点个数为n ,边为 n-1,所以 从 1开始

            // 该双层循环作用:用于确定每一次生成的子图,和哪个节点的距离最近
            // 子图:就是图解上的步骤 1 - 6 中, 1 是 A-C [7], A-G[2] ,A-B[5] , 2 是 A-C[7] ,A-B[5] , G-B[3] ,G-E[4] ,G-F[6] ......
            // 其实就是对图遍历两遍,一遍访问过的,一遍没访问过的,有访问过的根据没访问过的计算权值(边),得出最小,然后标记为已经访问过,继续循环 k 层
            for (int i = 0; i < graph.verxs; i++) {// i 索引对应的节点表示 被访问过的节点,标识为 0
                for (int j = 0; j < graph.verxs; j++) {// j 索引对应的节点表示 未被访问过的节点,标识为 1
                    if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {// 当前节点的权值(边)小于最小节点的权值(边)
                        // 替换 minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
                        minWeight = graph.weight[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            // 找到了一条边,是最小的
            System.out.println ("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
            // 将当前节点标记为已经访问
            visited[h2] = 1;// 为什么 h1 不用置为已经标记? 因为h1 本身已经是标记好的用来筛选,所以没必要
            // 重新设置为最大值
            minWeight = 10000;
        }
    }
}


// 图对象
class MGraph {
    int verxs;     // 表示图中节点的个数
    char[] data;   // 存放节点的数据
    int[][] weight;// 存放边(既 邻接矩阵)

    public MGraph(int verxs) {
        this.verxs = verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

5、仓库坐标

image.png

相关文章

网友评论

      本文标题:S6-算法-普利姆算法【2021-02-08】

      本文链接:https://www.haomeiwen.com/subject/zxnobktx.html