美文网首页
【R画图学习19.1】直方图

【R画图学习19.1】直方图

作者: jjjscuedu | 来源:发表于2022-11-21 18:40 被阅读0次

频率分布直方图,或者频数分布直方图,是一种用来可视化数据的分布情况的绘图,在生物医学领域应用广泛,比如展示高通量测序结果的测序读数分布等。

Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery

例如上面这个图展示的是两个定量蛋白组样品的频率分布直方图,有意思的是该图在x轴上下两个方向展示两组样品,在区分两组的同时又能很好的比较二者的差异。

今天我们就来学习一下频率分布直方图的画法。

用的测试数据是我从附表里面随便选的两列,不同基因的表达值。

library(ggplot2)

library(reshape2)

library(tidyverse)

data <- read.table("data.txt",header=T,sep="\t")

data_new <- melt(data,id="ID")  #还是前面学过的语法,长矩阵转化成短矩阵。

colnames(data_new) <- c("ID","Sample","Value")

先来一个简单版本的,一个变量的情况。我们先用hist函数测试。

X128 <- data_new %>% filter(Sample=="X128N")

X130 <- data_new %>% filter(Sample=="X130C")

hist(X128$Value,

    breaks = 14,  #指定直方图的X轴区间,可以是向量分割自己指定

    col = "red",

    xlab = "Fold Change(Log2)",

    ylab = "Frequency",

    main = "test",

    border = "black",

    freq = FALSE,

    density = 12,

    angle = 45,

    labels = T,  #添加直方图bar上的label

    ylim=c(0,0.8)

)

#添加密度线

lines(density(X128$Value),

      col = "black",

      lwd = 3)

#添加外框线

box()

下面我们还是测试最常用的ggplot。

ggplot(X128,aes(Value))+geom_histogram()

ggplot(X128,aes(Value))+

geom_histogram(stat = 'bin',bins = 20,   #设定间距的个数

              fill='darkgreen',

              color='gray')+

theme_bw()

也可以通过设置 binwidth 参数的值,该参数值会覆盖 bins 参数的值,所以只要设置其中一个参数就可以了

ggplot(X128)+

geom_histogram(aes(Value),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_histogram(aes(Value,y = -..count..),  #可以画出反方向的

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

theme_bw()+

theme(axis.title = element_blank())

我们再来添加密度曲线上去。

ggplot(X128,aes(Value))+

geom_histogram(stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

theme_bw()+

geom_freqpoly(bins = 20,binwidth = 0.5,size=1.5,color="red")+

theme(axis.title = element_blank())

ggplot(X128)+

geom_histogram(aes(Value),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_freqpoly(aes(Value),bins = 20,binwidth = 0.5,size=1.5,color="red")+

geom_histogram(aes(Value,y = -..count..),

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

geom_freqpoly(aes(Value,y = -..count..),bins = 20,binwidth = 0.5,size=1.5,color="red")+

theme_bw()+

theme(axis.title = element_blank())

默认的geom_histogram是画的count,我们也可以通过density来画密度。

ggplot(X128)+
geom_histogram(aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_histogram(aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

theme_bw()+

theme(axis.title = element_blank())

geom_freqpoly()的另一个方式是geom_density(),但底层密度计算是复杂的,从而导致有时结果很难解释,它们总是假设数据是连续的、无界的、平滑的。这两个函数是针对单个连续数值变量进行统计,但仍然可以比较不同的subgroup,举例:ggplot(diamonds, aes(price, fill = cut)) + geom_histogram(binwidth = 500)和ggplot(diamonds, aes(price, colour = cut)) + geom_freqpoly(binwidth = 500),即histogram设置aes的fill参数,freqpoly设置aes的color参数。另一种可选方案当然是分面啦。

ggplot(X128)+

geom_histogram(aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_density(aes(Value,y=..density..),bins = 20,binwidth = 0.5,size=1.5,color="red")+

geom_histogram(aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

geom_density(aes(Value,y = -..density..),bins = 20,binwidth = 0.5,size=1.5,color="red")+

theme_bw()+

theme(axis.title = element_blank())

我们还可以添加背景填充色,以及设置背景填充色。

dense=data.frame(density(X128$Value)[c("x","y")])    #获得密度分布数据

ggplot(X128)+

geom_histogram(aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='gray',

              color='gray')+

geom_density(aes(Value,y=..density..),size=1.5,color="red")+

geom_area(data=subset(dense,x<2),aes(x,y,fill="Label 1"),alpha=0.4)+

geom_area(data=subset(dense,x>=2 & x<3),aes(x,y,fill="Label 2"),alpha=0.4)+

geom_area(data=subset(dense,x>=3 & x<5),aes(x,y,fill="Label 3"),alpha=0.4)+

geom_area(data=subset(dense,x>=5),aes(x,y,fill="Label 4"),alpha=0.4)+

scale_fill_manual("Test Tile",breaks=c("Label 1","Label 2","Label 3","Label 4"),

                  values=c("Label 1"="red","Label 2"="blue","Label 3"="purple","Label 4"="cyan")) #自定义颜色

接下来,我们来绘制多个变量的情况。

ggplot()+

geom_histogram(data=X128,aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='lightgreen',

              color='gray')+

geom_density(data=X128,aes(Value,y=..density..),size=1.5,color="red")+

geom_histogram(data=X130,aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='lightblue',

              color='gray')+

geom_density(data=X130,aes(Value,y = -..density..),size=1.5,color="red")+

theme_bw()+

theme(axis.title = element_blank())

这样子,我们就绘制了一个镜像的直方图。

ggplot(data_new, aes(Value, after_stat(density), colour = Sample)) +

geom_freqpoly(bins = 40)

两组数据简单的密度曲线。

#多变量直方图

默认是堆积直方图的效果,和柱状图的调整是类似的,通过position来调整

ggplot(data_new, aes(Value, after_stat(density), fill= Sample)) +

geom_histogram(color="#e9ecef", alpha=0.6, position = 'identity') +

#geom_histogram(color="#e9ecef", alpha=0.6, position = 'stack') +

#geom_histogram(color="#e9ecef", alpha=0.6, position = 'dodge') +

#geom_histogram(color="#e9ecef", alpha=0.6, position = 'fill') +

scale_fill_manual(values=c("#377eb8", "#4daf4a"))

这是两个变量直方图放在一起的样子,还是不如镜像直方图直观。

也可以利用我们前面用过的分面技巧,分开绘制。

#分面直方图

ggplot(data_new, aes(Value, after_stat(density), fill= Sample)) +

geom_histogram(alpha = 0.6, bins = 40) +

geom_freqpoly(bins = 40)+

facet_wrap(~ Sample) +

theme(legend.position = "none")

下面,我们试着画一下,我们开始在paper中看到的图。

ggplot()+

geom_histogram(data=X128,aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='#2AC643',

              color='white')+

geom_histogram(data=X130,aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='gray60',

              color='white')+

scale_y_continuous(label=abs)+

theme_classic(base_size = 15)+    #换个背景主题

scale_x_continuous(limits = c(1,7),

                    breaks = c(1,2,3,4,5,6,7),

                    expand = c(0,0))+

theme(panel.border = element_rect(size = 1,fill='transparent'),

        legend.position = 'none',  #去掉图例

        axis.text = element_text(colour = 'black'))+

geom_vline(xintercept =median(X128$Value),linetype=2,cex=1)+ #添加辅助线

labs(x='X128/X130',y='Frequency')+ #自定义轴标题

annotate('text',x=median(X128$Value)+0.1,y=-0.6,

        label = round(median(X128$Value),digits = 2),

        size=4,color='black')+

annotate('text',x=2,y=0.7,label='Known nuclear RBPs',size=6,color='#2AC643')+

annotate('text',x=2,y=-0.7,label='Non-nuclear Non-RBPs',size=6,color='grey50')+  #添加文本标签

geom_segment(aes(y = 0.78, yend = 0.78,x=median(X128$Value), xend =median(X128$Value)+0.15),arrow = arrow(length = unit(0.2, "cm"),type="closed"),

            size=0.5)+   #添加箭头

annotate('text',x=median(X128$Value)+0.3,y=0.78,

        label ="retain",digits = 2,

        size=4,color='black')   #添加文本

相关文章

  • 【R画图学习19.1】直方图

    频率分布直方图,或者频数分布直方图,是一种用来可视化数据的分布情况的绘图,在生物医学领域应用广泛,比如展示高通量测...

  • 跟着Nature Communications 学画图~ggpl

    今天继续 跟着Nature Communications学画图系列第五篇。学习R语言ggplot2包画图。然后多个...

  • R语言实战-1入门简介

    今晚开始正式学习R语言实战 1.R语言简介 1.1为何使用R 问问自己为何学习R?为了用文章里画图,为了能生动的展...

  • R语言:表格的条形图转化

    接着上一篇文章R语言:表格的线图转化继续练习,这次是直方图。 前段时间在视频课程学习过直方图案例,有一个citys...

  • R语言 直方图

    直方图表示被存储到范围中的变量的值的频率。 直方图类似于条形图,但不同之处在于将值分组为连续范围。 直方图中的每个...

  • R画直方图

    来源:https://www.cnblogs.com/xudongliang/p/6913363.html his...

  • 【R语言】--- 直方图

    直方图简介 直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段组成,...

  • Matplotlib实践使用笔记——基本画图

    基本画图操作 内容包括画线、条形图、直方图、饼图。 画线 画条形图 简单条形图 直方图 统计出现的次数 饼状图 会...

  • 机器学习5:R画图

    点图,条形图,饼图,箱形图 茎叶图

  • 第五部分第19章使用ggplot2进行高级绘图

    "学习做图还是以实践为主,因此写好脚本的代码结合笔记梳理思路。这里笔记比较简略。" 19.1 R中四种图形系统 图...

网友评论

      本文标题:【R画图学习19.1】直方图

      本文链接:https://www.haomeiwen.com/subject/abebxdtx.html