1. inception-v3 简介
The Inception v3 model is a deep convolutional neural network, which has been pre-trained for the ImageNet Large Visual Recognition Challenge using data from 2012, and it can differentiate between 1,000 different classes, like “cat”, “dishwasher” or “plane”.
The TensorFlow team already prepared a tutorial on how to execute the image classification on your machine. Nevertheless, I’ll show you as well.
2. 官方分类模型使用
下载Tensorflow/models,用tensorflow提供的classify_image进行图像分类:
git clone https://github.com/tensorflow/models.git
cd models/tutorials/image/imagenet
python classify_image.py
执行 python classify_image.py结果如下:
classify_image.py会首先下载分类器模型:
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
下载后会放到本地/tmp/imagenet/路径下:
3. 训练自己的模型
- 下载代码:
git clone https://github.com/koflerm/tensorflow-image-classifier.git
代码目录:
- 到当前目录创建两个文件夹:tf_files 和 training_dataset:
- 把图片素材放到training_dataset目录下,图片素材格式如下:
Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:
~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
~/flower_photos/rose/anotherphoto77.jpg
~/flower_photos/sunflower/somepicture.jpg
例如,我的素材格式如下:
-
训练
直接调用./train.sh开始训练 -
执行识别命令
python classify.py [image path]
结果如下:












网友评论