美文网首页
多层神经网络用于猫分类

多层神经网络用于猫分类

作者: 疯了个魔 | 来源:发表于2018-12-09 17:27 被阅读0次

工具包

工具包下载

import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
from dnn_app_utils_v2 import *

#matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

np.random.seed(1)

数据集

数据集下载

train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
# Example of a picture
index = 200
plt.imshow(train_x_orig[index])
print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") +  " picture.")
plt.show()
数据集示例
y = 1. It's a cat picture.

数据集基本信息

m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]

print ("Number of training examples: " + str(m_train))
print ("Number of testing examples: " + str(m_test))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_x_orig shape: " + str(train_x_orig.shape))
print ("train_y shape: " + str(train_y.shape))
print ("test_x_orig shape: " + str(test_x_orig.shape))
print ("test_y shape: " + str(test_y.shape))

输出:

Number of training examples: 209
Number of testing examples: 50
Each image is of size: (64, 64, 3)
train_x_orig shape: (209, 64, 64, 3)
train_y shape: (1, 209)
test_x_orig shape: (50, 64, 64, 3)
test_y shape: (1, 50)

数据集预处理

数据预处理
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T   # The "-1" makes reshape flatten the remaining dimensions
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T

train_x = train_x_flatten/255.
test_x = test_x_flatten/255.

print ("train_x's shape: " + str(train_x.shape))
print ("test_x's shape: " + str(test_x.shape))

输出:

train_x's shape: (12288, 209)
test_x's shape: (12288, 50)

两层神经网络

猫分类问题两层神经网络
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
    np.random.seed(1)
    grads = {}
    costs = []
    m = X.shape[1]
    (n_x, n_h, n_y) = layers_dims

    parameters = initialize_parameters(n_x, n_h, n_y)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]

    for i in range(0, num_iterations):

        A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
        A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")

        cost = compute_cost(A2, Y)

        dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))

        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")

        grads['dW1'] = dW1
        grads['db1'] = db1
        grads['dW2'] = dW2
        grads['db2'] = db2

        parameters = update_parameters(parameters, grads, learning_rate)

        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]

        if print_cost and i % 100 == 0:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per tens)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters

测试:

n_x = 12288     # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)

输出:


损失函数曲线
Cost after iteration 0: 0.6930497356599888
Cost after iteration 100: 0.6464320953428849
Cost after iteration 200: 0.6325140647912678
Cost after iteration 300: 0.6015024920354665
Cost after iteration 400: 0.5601966311605747
Cost after iteration 500: 0.515830477276473
Cost after iteration 600: 0.4754901313943325
Cost after iteration 700: 0.4339163151225749
Cost after iteration 800: 0.400797753620389
Cost after iteration 900: 0.3580705011323798
Cost after iteration 1000: 0.3394281538366412
Cost after iteration 1100: 0.3052753636196263
Cost after iteration 1200: 0.27491377282130175
Cost after iteration 1300: 0.2468176821061483
Cost after iteration 1400: 0.19850735037466116
Cost after iteration 1500: 0.17448318112556632
Cost after iteration 1600: 0.17080762978096647
Cost after iteration 1700: 0.1130652456216472
Cost after iteration 1800: 0.09629426845937152
Cost after iteration 1900: 0.08342617959726863
Cost after iteration 2000: 0.07439078704319081
Cost after iteration 2100: 0.06630748132267934
Cost after iteration 2200: 0.05919329501038171
Cost after iteration 2300: 0.053361403485605544
Cost after iteration 2400: 0.04855478562877018

训练集准确性:

predictions_train = predict(train_x, train_y, parameters)

结果:

Accuracy: 1.0

测试集准确性:

predictions_test = predict(test_x, test_y, parameters)

结果:

Accuracy: 0.72

L层神经网络

猫分类问题L层神经网络
layers_dims = [12288, 20, 7, 5, 1] #  5-layer model

def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
    np.random.seed(1)
    costs = []

    parameters = initialize_parameters_deep(layers_dims)

    for i in range(0, num_iterations):
        AL, caches = L_model_forward(X, parameters)
        cost = compute_cost(AL, Y)

        grads =  L_model_backward(AL, Y, caches)

        parameters = update_parameters(parameters, grads, learning_rate)

        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per tens)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters

测试:

parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)

输出:


损失函数曲线
Cost after iteration 0: 0.771749
Cost after iteration 100: 0.672053
Cost after iteration 200: 0.648263
Cost after iteration 300: 0.611507
Cost after iteration 400: 0.567047
Cost after iteration 500: 0.540138
Cost after iteration 600: 0.527930
Cost after iteration 700: 0.465477
Cost after iteration 800: 0.369126
Cost after iteration 900: 0.391747
Cost after iteration 1000: 0.315187
Cost after iteration 1100: 0.272700
Cost after iteration 1200: 0.237419
Cost after iteration 1300: 0.199601
Cost after iteration 1400: 0.189263
Cost after iteration 1500: 0.161189
Cost after iteration 1600: 0.148214
Cost after iteration 1700: 0.137775
Cost after iteration 1800: 0.129740
Cost after iteration 1900: 0.121225
Cost after iteration 2000: 0.113821
Cost after iteration 2100: 0.107839
Cost after iteration 2200: 0.102855
Cost after iteration 2300: 0.100897
Cost after iteration 2400: 0.092878

训练集准确性:

pred_train = predict(train_x, train_y, parameters)

结果:

Accuracy: 0.985645933014

测试集准确性:

pred_test = predict(test_x, test_y, parameters)

结果:

Accuracy: 0.8

相关文章

  • 多层神经网络用于猫分类

    工具包 工具包下载 数据集 数据集下载 数据集基本信息 输出: 数据集预处理 输出: 两层神经网络 测试: 输出:...

  • keras 例子

    基于多层感知机的softmax分类 MLP二分类 卷积神经网络 使用LSTM的序列分类 使用ID卷积的序列分类

  • Sklearn警告解决办法: UserWarning: X ha

    警告出现于在使用sklearn中的MLPClassifier(多层神经网络分类器)中完整警告信息: /usr/lo...

  • 2020-02-12 学习篇:组队学习《动手学习深度学习》(一)

    Task01: 线性回归、Softmax与分类模型、多层感知机Task02: 文本预处理、语言模型、循环神经网络基...

  • 动手学深度学习-Task01

    任务名称 线性回归;Softmax与分类模型、多层感知机 学习心得 1、对pytorch神经网络的基本搭建进行了复...

  • DeepLearning(1)

    一、简介 Deeplearning4j(深度学习 For Java)是一种用于配置深度多层神经网络的领域专用语言。...

  • Keras学习(2)——Hello World

    本篇将手把手教你实现第一个最简单的深度神经网络模型,基于多层感知器的二分类。 1. 基本概念 多层感知器:MLP,...

  • 深度学习-1

    深度学习基础 介绍单层神经网络:线性回归和softmax回归多层神经网络:多层感知机 1.线性回归 例如房价预测,...

  • 一文理清深度学习前馈神经网络

    ? Index 多层感知机(MLP)介绍 深度神经网络的激活函数 深度神经网络的损失函数 多层感知机的反向传播算法...

  • DeepLearning学习笔记#Building your D

    概述 本文介绍如何利用Python的来实现具有多个隐藏层的图片分类问题。通过这次建立的多层神经网络模型,可以将之前...

网友评论

      本文标题:多层神经网络用于猫分类

      本文链接:https://www.haomeiwen.com/subject/bdfkhqtx.html