回顾

数据

行为样本,列为feature。
Multiple Dimension Logistic Regression Model

简单的逻辑回归模型中一个样本为一个feature对应一个y hat,这里有8个feature,对应的也是一个y hat。所以每一个feature与权重w相乘加上偏置得到的结果才是我们想要的。这里使用了矩阵的乘法和python中的广播机制。
Mini-Batch (N samples)

根据矩阵乘法的对应关系,当输出为N×1维,输入为N×8维时,权重w的为8×1维。上面的Linear(8,1)的8和1分别对应着输入和输出的维数。

Example: Artificial Neural Network

该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。

Example: Diabetes Prediction

Prepare Dataset

import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵
Define Model

class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6) # 第一层输入8维到6维
self.linear2 = torch.nn.Linear(6, 4) # 第二层输入6维到4维
self.linear3 = torch.nn.Linear(4, 1) # 第三层输入4维到1维
self.sigmoid = torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x)) # y hat
return x
model = Model()
Construct Loss and Optimizer

# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
Training Cycle

epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
代码
import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x)) # y hat
return x
model = Model()
# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

# 参数说明
# 第一层的参数:
layer1_weight = model.linear1.weight.data
layer1_bias = model.linear1.bias.data
print("layer1_weight", layer1_weight)
print("layer1_weight.shape", layer1_weight.shape)
print("layer1_bias", layer1_bias)
print("layer1_bias.shape", layer1_bias.shape)
作业-Try different activate function
import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.activate = torch.nn.Hardsigmoid() # 将其看作是网络的一层,而不是简单的函数使用
def forward(self, x):
x = self.activate(self.linear1(x))
x = self.activate(self.linear2(x))
x = self.activate(self.linear3(x)) # y hat
return x
model = Model()
# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.title('Hardsigmoid')
plt.show()

网友评论