美文网首页
GCD 的其他方法

GCD 的其他方法

作者: 月沉眠love | 来源:发表于2019-07-17 17:18 被阅读0次

GCD 的其他方法

1 .GCD 栅栏方法:dispatch_barrier_async

我们有时需要异步执行两组操作,而且第一组操作执行完之后,才能开始执行第二组操作。这样我们就需要一个相当于栅栏一样的一个方法将两组异步执行的操作组给分割起来

/**
 * 栅栏方法 dispatch_barrier_async
 */
- (void)barrier {
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_barrier_async(queue, ^{
        // 追加任务 barrier
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"barrier---%@",[NSThread currentThread]);// 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务4
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"4---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
}
屏幕快照 2019-07-17 下午4.31.30.png
2 .GCD 延时执行方法:dispatch_after

我们经常会遇到这样的需求:在指定时间(例如3秒)之后执行某个任务。可以用 GCD 的dispatch_after函数来实现。
需要注意的是:dispatch_after函数并不是在指定时间之后才开始执行处理,而是在指定时间之后将任务追加到主队列中。严格来说,这个时间并不是绝对准确的,但想要大致延迟执行任务,dispatch_after函数是很有效的。

/**
 * 延时执行方法 dispatch_after
 */
- (void)after {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncMain---begin");
    
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        // 2.0秒后异步追加任务代码到主队列,并开始执行
        NSLog(@"after---%@",[NSThread currentThread]);  // 打印当前线程
    });
}

在打印 asyncMain---begin 之后大约 2.0 秒的时间,打印了 after---<NSThread: 0x60000006ee00>{number = 1, name = main}


屏幕快照 2019-07-17 下午4.35.23.png
3.GCD 一次性代码(只执行一次):dispatch_once

我们在创建单例、或者有整个程序运行过程中只执行一次的代码时,我们就用到了 GCD 的 dispatch_once 函数。

/**
 * 一次性代码(只执行一次)dispatch_once
 */
- (void)once {
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        // 只执行1次的代码(这里面默认是线程安全的)
    });
}

4.快速迭代方法:dispatch_apply

通常我们会用 for 循环遍历,但是 GCD 给我们提供了快速迭代的函数dispatch_apply。dispatch_apply按照指定的次数将指定的任务追加到指定的队列中,并等待全部队列执行结束。

如果是在串行队列中使用 dispatch_apply,那么就和 for 循环一样,按顺序同步执行。可这样就体现不出快速迭代的意义了。
我们可以利用并发队列进行异步执行。比如说遍历 0~5 这6个数字,for 循环的做法是每次取出一个元素,逐个遍历。dispatch_apply 可以 在多个线程中同时(异步)遍历多个数字。
还有一点,无论是在串行队列,还是并发队列中,dispatch_apply 都会等待全部任务执行完毕,这点就像是同步操作,也像是队列组中的 dispatch_group_wait方法。

/**
 * 快速迭代方法 dispatch_apply
 */
- (void)apply {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    
    NSLog(@"apply---begin");
    dispatch_apply(6, queue, ^(size_t index) {
        NSLog(@"%zd---%@",index, [NSThread currentThread]);
    });
    NSLog(@"apply---end");
}

因为是在并发队列中异步执行任务,所以各个任务的执行时间长短不定,最后结束顺序也不定。但是apply---end一定在最后执行。这是因为dispatch_apply函数会等待全部任务执行完毕。


屏幕快照 2019-07-17 下午4.50.14.png
5 .GCD 队列组:dispatch_group

有时候我们会有这样的需求:分别异步执行2个耗时任务,然后当2个耗时任务都执行完毕后再回到主线程执行任务。这时候我们可以用到 GCD 的队列组。

调用队列组的 dispatch_group_async 先把任务放到队列中,然后将队列放入队列组中。或者使用队列组的 dispatch_group_enter、dispatch_group_leave 组合 来实现
dispatch_group_async。
调用队列组的 dispatch_group_notify 回到指定线程执行任务。或者使用 dispatch_group_wait 回到当前线程继续向下执行(会阻塞当前线程)。

5.1 dispatch_group_notify

监听 group 中任务的完成状态,当所有的任务都执行完成后,追加任务到 group 中,并执行任务。

/**
 * 队列组 dispatch_group_notify
 */
- (void)groupNotify {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"group---begin");
    
    dispatch_group_t group =  dispatch_group_create();
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        // 等前面的异步任务1、任务2都执行完毕后,回到主线程执行下边任务
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
        NSLog(@"group---end");
    });
}

当所有任务都执行完成之后,才执行dispatch_group_notify block 中的任务。


屏幕快照 2019-07-17 下午4.55.17.png
5.2 dispatch_group_wait

暂停当前线程(阻塞当前线程),等待指定的 group 中的任务执行完成后,才会往下继续执行。

/**
 * 队列组 dispatch_group_wait
 */
- (void)groupWait {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"group---begin");
    
    dispatch_group_t group =  dispatch_group_create();
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    // 等待上面的任务全部完成后,会往下继续执行(会阻塞当前线程)
    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
    
    NSLog(@"group---end");
}
5.3 dispatch_group_enter、dispatch_group_leave

dispatch_group_enter 标志着一个任务追加到 group,执行一次,相当于 group 中未执行完毕任务数+1

dispatch_group_leave 标志着一个任务离开了 group,执行一次,相当于 group 中未执行完毕任务数-1。
当 group 中未执行完毕任务数为0的时候,才会使dispatch_group_wait解除阻塞,以及执行追加到dispatch_group_notify中的任务。

/**
 * 队列组 dispatch_group_enter、dispatch_group_leave
 */
- (void)groupEnterAndLeave
{
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"group---begin");
    
    dispatch_group_t group = dispatch_group_create();
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_group_enter(group);
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
        dispatch_group_leave(group);
    });
    
    dispatch_group_enter(group);
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
        dispatch_group_leave(group);
    });
    
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        // 等前面的异步操作都执行完毕后,回到主线程.
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
        NSLog(@"group---end");
    });
    
//    // 等待上面的任务全部完成后,会往下继续执行(会阻塞当前线程)
//    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
//
//    NSLog(@"group---end");
}

从dispatch_group_enter、dispatch_group_leave相关代码运行结果中可以看出:当所有任务执行完成之后,才执行 dispatch_group_notify 中的任务。这里的dispatch_group_enter、dispatch_group_leave组合,其实等同于dispatch_group_async。

屏幕快照 2019-07-17 下午5.18.28.png
6. Dispatch Semaphore 线程安全和线程同步(为线程加锁)

线程安全:如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作(更改变量),一般都需要考虑线程同步,否则的话就可能影响线程安全。
线程同步:可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 A;A 再继续操作。
举个简单例子就是:两个人在一起聊天。两个人不能同时说话,避免听不清(操作冲突)。等一个人说完(一个线程结束操作),另一个再说(另一个线程再开始操作)。
下面,我们模拟火车票售卖的方式,实现 NSThread 线程安全和解决线程同步问题。
场景:总共有50张火车票,有两个售卖火车票的窗口,一个是北京火车票售卖窗口,另一个是上海火车票售卖窗口。两个窗口同时售卖火车票,卖完为止。

6.1 非线程安全(不使用 semaphore)
/**
 * 非线程安全:不使用 semaphore
 * 初始化火车票数量、卖票窗口(非线程安全)、并开始卖票
 */
- (void)initTicketStatusNotSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketNotSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketNotSafe];
    });
}

/**
 * 售卖火车票(非线程安全)
 */
- (void)saleTicketNotSafe {
    while (1) {
        
        if (self.ticketSurplusCount > 0) {  //如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { //如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            break;
        }
        
    }
}
屏幕快照 2019-07-17 下午5.56.33.png
6.2 线程安全(使用 semaphore 加锁)
/**
 * 线程安全:使用 semaphore 加锁
 * 初始化火车票数量、卖票窗口(线程安全)、并开始卖票
 */
- (void)initTicketStatusSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    semaphoreLock = dispatch_semaphore_create(1);
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketSafe];
    });
}

/**
 * 售卖火车票(线程安全)
 */
- (void)saleTicketSafe {
    while (1) {
        // 相当于加锁
        dispatch_semaphore_wait(semaphoreLock, DISPATCH_TIME_FOREVER);
        
        if (self.ticketSurplusCount > 0) {  //如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { //如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            
            // 相当于解锁
            dispatch_semaphore_signal(semaphoreLock);
            break;
        }
        
        // 相当于解锁
        dispatch_semaphore_signal(semaphoreLock);
    }
}
屏幕快照 2019-07-17 下午5.58.07.png

原文地址:https://www.jianshu.com/p/2d57c72016c6

作者:行走少年郎

相关文章

  • GCD 的其他方法

    GCD 的其他方法 1 .GCD 栅栏方法:dispatch_barrier_async 我们有时需要异步执行两组...

  • GCD

    GCD是苹果开发的一个多核编程的解决方法,GCD和其他的多线程技术方案相比,使用起来更加简单和方便。 使用GCD ...

  • iOS多线程--彻底学会多线程之『GCD』

    GCD 文章目录 GCD简介 任务和队列 GCD的使用步骤 队列的创建方法 任务的创建方法 GCD的基本使用 并行...

  • iOS多线程--GCD篇

    GCD 文章目录GCD简介任务和队列GCD的使用步骤队列的创建方法任务的创建方法GCD的基本使用并行队列 + 同步...

  • GCD相关学习整理

    GCD多线程整理学习 GCD简介 iOS中多核编程的解决方法。 主要用于优化应用程序以及支持多核处理器以及其他对称...

  • GCD

    1,GCD 栅栏方法:dispatch_barrier_async 2,GCD 延时执行方法:dispatch_a...

  • GCD其他函数

    1。 dispatch_apply 执行某个代码片段N次。 dispatch_apply(5, globalQ, ...

  • GCD其他知识

  • 多线程【转】

    文章目录GCD简介任务和队列GCD的使用步骤队列的创建方法任务的创建方法GCD的基本使用并行队列 + 同步执行并行...

  • GCD的学习笔记(One)

    并行和并发 GCD简介 GCD的任务 GCD的队列 GCD创建队列或获取队列的方法 任务的执行方式:同步执行(同步...

网友评论

      本文标题:GCD 的其他方法

      本文链接:https://www.haomeiwen.com/subject/dacclctx.html