tf.reduce_mean 函数用于计算张量 tensor 沿着指定的数轴( tensor 的某一维度)上的的平均值,主要用作降维或者计算 tensor(图像)的平均值。
reduce_mean(input_tensor,
axis=None,
keepdims=False,
name=None,
reduction_indices=None)
第一个参数 input_tensor: 输入的待降维的 tensor;
第二个参数 axis: 指定的轴,如果不指定,则计算所有元素的均值;
第三个参数 keepdims:是否降维度,设置为 True,输出的结果保持输入 tensor 的形状,设置为 False,输出结果会降低维度;
第四个参数 name: 操作的名称;
第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;
举例:
import tensorflow as tf
x = [[1,2,3],[1,2,3]]
xx = tf.cast(x,tf.float32)
mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)
with tf.Session() as sess:
m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1])
print m_a # output: 2.0
print m_0 # output: [ 1. 2. 3.]
print m_1 #output: [ 2. 2.]
类似函数还有:
tf.reduce_sum
:计算 tensor 指定轴方向上的所有元素的累加和;
tf.reduce_max
: 计算 tensor 指定轴方向上的各个元素的最大值;
tf.reduce_all
: 计算 tensor 指定轴方向上的各个元素的逻辑和(and 运算);
tf.reduce_any
: 计算 tensor 指定轴方向上的各个元素的逻辑或(or 运算);
网友评论