首先Spark内存管理分两种类别:
- execution 用于suffle join aggregation
Execution memory refers to that used for computation in shuffles, joins, sorts and aggregations - storage 用于缓存 RDD 数据和广播(Broadcast)数据
cache
Note
- 在Spark中execution 和 storage 共享一个统一 region (M),当没有execution内存使用时,storage可以获得所有的内存来进行缓存数据。
- execution可以剔除storage,但是,只有在总存储内存使用量低于某个阈值时才会这样做
-storage不能剔除execution,由于实现的复杂性
Spark内存模式MemoryMode分为两种,静态和统一。
Spark1.6开始默认使用的就是UnifiedMemoryManager(统一),之前是使用的StaticMemoryManager(静态)
一、内存分配之StaticMemoryManager
在 Spark 最初采用的静态内存管理机制下,存储内存、执行内存和其他内存的大小在 Spark 应用程序运行期间均为固定的,但用户可以应用程序启动前进行配置。
image.png
val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", false)
val memoryManager: MemoryManager =
if (useLegacyMemoryManager) { // true
// 老的内存管理器
new StaticMemoryManager(conf, numUsableCores)
} else { //false
// 新的内存管理器
UnifiedMemoryManager(conf, numUsableCores) <==
}
}
假设有10G内存,使用静态内存管理,execution可用内存为1.6G,storage可用内存为5.6G。这种内存管理模式execution和storage之间不能相互借内存,如果你的程序中没有shuffle Join 聚合的话,想把内存都给缓存使用只能通过调整百分比参数。
StaticMemoryManager.getMaxExecutionMemory(conf) {
private def getMaxExecutionMemory(conf: SparkConf): Long = {
val systemMaxMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
if (systemMaxMemory < MIN_MEMORY_BYTES) {
throw new IllegalArgumentException(s"System memory $systemMaxMemory must " +
s"be at least $MIN_MEMORY_BYTES. Please increase heap size using the --driver-memory " +
s"option or spark.driver.memory in Spark configuration.")
}
if (conf.contains("spark.executor.memory")) {
val executorMemory = conf.getSizeAsBytes("spark.executor.memory")
if (executorMemory < MIN_MEMORY_BYTES) {
throw new IllegalArgumentException(s"Executor memory $executorMemory must be at least " +
s"$MIN_MEMORY_BYTES. Please increase executor memory using the " +
s"--executor-memory option or spark.executor.memory in Spark configuration.")
}
}
val memoryFraction = conf.getDouble("spark.shuffle.memoryFraction", 0.2)
val safetyFraction = conf.getDouble("spark.shuffle.safetyFraction", 0.8)
// 10G * 0.2 * 0.8 = 1.6G
(systemMaxMemory * memoryFraction * safetyFraction).toLong
}
}
StaticMemoryManager.getMaxStorageMemory(conf) {
val systemMaxMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
val memoryFraction = conf.getDouble("spark.storage.memoryFraction", 0.6)
val safetyFraction = conf.getDouble("spark.storage.safetyFraction", 0.9)
// 10G * 0.6 * 0.9 = 5.4G
(systemMaxMemory * memoryFraction * safetyFraction).toLong
}
公式:
可用的存储内存 = systemMaxMemory * spark.storage.memoryFraction(0.6) * spark.storage.safetyFraction(0.9)
可用的执行内存 = systemMaxMemory * spark.shuffle.memoryFraction(0.2) * spark.shuffle.safetyFraction(0.8)
二、统一内存管理模式UnifiedMemoryManager
Spark 1.6 之后引入的统一内存管理机制,与静态内存管理的区别在于存储内存和执行内存共享同一块空间,可以动态占用对方的空闲区域
image.png
object UnifiedMemoryManager {
// Set aside a fixed amount of memory for non-storage, non-execution purposes.
// This serves a function similar to `spark.memory.fraction`, but guarantees that we reserve
// sufficient memory for the system even for small heaps. E.g. if we have a 1GB JVM, then
// the memory used for execution and storage will be (1024 - 300) * 0.6 = 434MB by default.
private val RESERVED_SYSTEM_MEMORY_BYTES = 300 * 1024 * 1024
def apply(conf: SparkConf, numCores: Int): UnifiedMemoryManager = {
val maxMemory = getMaxMemory(conf)
new UnifiedMemoryManager(
conf,
maxHeapMemory = maxMemory,
onHeapStorageRegionSize =
(maxMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong,
numCores = numCores)
}
/**
* Return the total amount of memory shared between execution and storage, in bytes.
*/
private def getMaxMemory(conf: SparkConf): Long = {
val systemMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
val reservedMemory = conf.getLong("spark.testing.reservedMemory",
if (conf.contains("spark.testing")) 0 else RESERVED_SYSTEM_MEMORY_BYTES)
val minSystemMemory = (reservedMemory * 1.5).ceil.toLong
if (systemMemory < minSystemMemory) {
throw new IllegalArgumentException(s"System memory $systemMemory must " +
s"be at least $minSystemMemory. Please increase heap size using the --driver-memory " +
s"option or spark.driver.memory in Spark configuration.")
}
// SPARK-12759 Check executor memory to fail fast if memory is insufficient
if (conf.contains("spark.executor.memory")) {
val executorMemory = conf.getSizeAsBytes("spark.executor.memory")
if (executorMemory < minSystemMemory) {
throw new IllegalArgumentException(s"Executor memory $executorMemory must be at least " +
s"$minSystemMemory. Please increase executor memory using the " +
s"--executor-memory option or spark.executor.memory in Spark configuration.")
}
}
// 10G - 300M
val usableMemory = systemMemory - reservedMemory
val memoryFraction = conf.getDouble("spark.memory.fraction", 0.6)
// (10G - 300M) * 60%
(usableMemory * memoryFraction).toLong
}
}
//(10G - 300M) * 60% * 50%
onHeapStorageRegionSize =
(maxMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong













网友评论