有监督、无监督和半监督
最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类,输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是找到特征和标签间的关系(mapping)。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。在上述的分类过程中,如果所有训练数据都有标签,则为有监督学习(supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。
因此,learning家族的整体构造是这样的:
有监督学习(分类,回归)
↕
半监督学习(分类,回归),transductive learning(分类,回归)
↕
半监督聚类(有标签数据的标签不是确定的,类似于:肯定不是xxx,很可能是yyy)
↕
无监督学习(聚类)
网友评论