
DataStream → SplitStream
并不是真正的切开拆分成了两条流,只是在splitStream里面分成了两组。所以SplitStream不能直接操作需要另一个算子select拿出来处理。

SplitStream→DataStream
从一个SplitStream中获取一个或者多个DataStream。
package com.atguigu.apiTest
import org.apache.flink.streaming.api.scala._
object TestSplitSelect {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val dataStream: DataStream[String] = env.readTextFile("C:\\Users\\Administrator\\Desktop\\0311Flink\\flink\\src\\main\\resources\\sensor")
val dataStrem2: DataStream[SensorReading] = dataStream.map(data => {
val dataArray: Array[String] = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)
})
val splitStream: SplitStream[SensorReading] = dataStrem2.split(sensorData => {
if (sensorData.temperature > 30) Seq("high") else Seq("low")
})
val high = splitStream.select("high")
val low = splitStream.select("low")
val all = splitStream.select("high","low")
high.print("high")
low.print("low")
all.print("all")
env.execute()
}
}
//传感器读数样例类
case class SensorReading(id:String, timestamp:Long, temperature: Double)
输出:
low:1> SensorReading(sensor_7,1547718202,6.7)
all:4> SensorReading(sensor_1,1547718199,35.8)
low:3> SensorReading(sensor_1,1547718200,11.1)
high:4> SensorReading(sensor_1,1547718199,35.8)
all:1> SensorReading(sensor_7,1547718202,6.7)
all:4> SensorReading(sensor_6,1547718201,15.4)
low:4> SensorReading(sensor_6,1547718201,15.4)
all:2> SensorReading(sensor_10,1547718206,10.1)
low:2> SensorReading(sensor_10,1547718206,10.1)
all:3> SensorReading(sensor_1,1547718200,11.1)
high:1> SensorReading(sensor_10,1547718205,38.1)
all:1> SensorReading(sensor_10,1547718205,38.1)
网友评论