算法

作者: Hengry | 来源:发表于2019-04-13 13:19 被阅读0次

十大经典排序算法(动图演示)

【数据结构】链表的原理及与其相关的常见面试题总结

一、排序算法

  • 交换排序
    • 冒泡排序
    • 快速排序
  • 插入排序
    • 简单插入排序
    • 希尔排序
  • 选择排序
    • 简单选择排序
    • 堆排序
  • 归并排序
    • 二路归并排序
    • 多路归并排序

1、冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述
  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。
1.2 代码实现
function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相邻元素两两对比
                var temp = arr[j+1];        // 元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

2、选择排序(Selection Sort)

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

2.1 算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1..n],有序区为空;
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  • n-1趟结束,数组有序化了。
2.2 代码实现
function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 寻找最小的数
                minIndex = j;                 // 将最小数的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
} 
2.3 算法分析

表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

3、插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

3.1 算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤2~5。
3.2 代码实现
function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while (preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex + 1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex + 1] = current;
    }
    return arr;
}

4、希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序

3.1 算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
3.2 代码实现
// 修改于 2019-03-06
function shellSort(arr) {
    var len = arr.length;
    for (var gap = Math.floor(len / 2); gap > 0; gap = Math.floor(gap / 2)) {
        // 注意:这里和动图演示的不一样,动图是分组执行,实际操作是多个分组交替执行
        for (var i = gap; i < len; i++) {
            var j = i;
            var current = arr[i];
            while (j - gap >= 0 && current < arr[j - gap]) {
                 arr[j] = arr[j - gap];
                 j = j - gap;
            }
            arr[j] = current;
        }
    }
    return arr;
}

相关文章

  • 匈牙利算法

    算法思想 算法流程 算法步骤 算法实现 python 算法应用

  • web开发需要知道的几个算法

    算法分类 快速排序算法 深度优先算法 广度优先算法 堆排序算法 归并排序算法

  • 机器学习算法

    机器学习的算法分监督算法和无监督 算法。监督算法包括回归算法,神经网络,SVM;无监督算法包括聚类算法,降维算法。...

  • 字符串匹配

    BF 算法和 RK 算法BM 算法和 KMP 算法

  • 垃圾回收算法有几种类型? 他们对应的优缺点又是什么?

    常见的垃圾回收算法有: 标记-清除算法、复制算法、标记-整理算法、分代收集算法 标记-清除算法 标记—清除算法包括...

  • 头条-手撕代码

    [toc] 图算法 以及最短路径算法 树算法 手写LRU 排序算法 链表算法

  • 关于一些算法

    我们平常说的算法按照使用方向加密算法,排序算法,搜索算法,优化算法,音视频处理算法,图片处理算法 1.加密解密算法...

  • 给我巨大影响的技术书籍

    算法《算法概论》《算法设计与分析基础》 Anany Levitin《算法引论》Udi Manber《算法导论》《什...

  • 缓存相关

    cache淘汰算法:LIRS 算法 缓存那些事 Redis缓存淘汰算法,LRU算法,LRU算法讲解

  • LZW压缩算法

    参考链接:超级简单的数据压缩算法—LZW算法压缩算法——lzw算法实现LZW算法 LZW 压缩算法正确图解

网友评论

      本文标题:算法

      本文链接:https://www.haomeiwen.com/subject/ggdkvqtx.html