scCancer2

作者: byejya | 来源:发表于2025-03-17 09:34 被阅读0次

    安装还算简单,有几个依赖包需要下载.tar手动安装,注意报错提示里的版本号即可。
    首先:几个主要模块(按照旧版来看):3个
    The workflow of scCancer mainly consists of three modules: scStatistics, scAnnotation, and scCombination.

    • The scStatistics performs basic statistical analyses of raw data and quality control.
      注:计算、可视化的过滤指标,有处理过的数据集(矩阵或 Seurat 对象),您可以单独使用细胞亚型注释和恶性细胞识别模块。

    scStatistics,并且不需要。

    • The scAnnotation performs functional data analyses and visualizations, such as low dimensional representation, clustering, cell type classification, cell malignancy estimation, cellular phenotype analyses, gene signature analyses, cell-cell interaction analyses, etc.

    • The scCombination perform multiple samples data integration, batch effect correction and analyses visualization.

    注:2,3在新版不同 变成 cellSubtypeAnno.Rmd和 malignantCellIden.Rmd

    cellranger后的数据直接跳过 scStatistics, 两个都挺重要,先从注释开始。

    首先是输入数据:不管下载新版本还是旧版本(参考下面),都是没有/data 这个子目录的,但没事,大致能确定需要的目录只是cellranger处理后的目录,即:#[1] "barcodes.tsv.gz"features.tsv.gz"matrix.mtx.gz" 所在目录

    • 示例数据:http://lifeome.net/software/sccancer/KC-example.tar.gz

    • 经cellranger处理得到的10X单细胞表达数据。sampleFolder即为代表单个样本。raw_feature_bc_matrixfiltered_feature_bc_matrix分别代表处过滤empty
      droplet前后的单细胞表达数据。

      image
    list.files("./data",recursive = T)
    #[1] "sample1/filtered_feature_bc_matrix/barcodes.tsv.gz"
    #[2] "sample1/filtered_feature_bc_matrix/features.tsv.gz"
    #[3] "sample1/filtered_feature_bc_matrix/matrix.mtx.gz"  
    #[4] "sample1/raw_feature_bc_matrix/barcodes.tsv.gz"     
    #[5] "sample1/raw_feature_bc_matrix/features.tsv.gz"     
    #[6] "sample1/raw_feature_bc_matrix/matrix.mtx.gz"
    
    list.files("./results",recursive = T,include.dirs = T)
    #[1] "sample1"
    

    下面我把测试成功的最简代码贴出来
    参考的官方流程,但是只截取最重要的,避免干扰
    官方:scCancer/vignettes/scCancer2.Rmd at master · czythu/scCancer · GitHub

    '''

    scStatistics

    ##最核心的 数据类型和位置:就是我说的"barcodes.tsv.gz"features.tsv.gz"matrix.mtx.gz"  所在目录的前两层,注意不是所在目录
    path <- "/dssg/home/acct-medwshuai/medwshuai/2025-3-11-xujy_MusPAAD/DZOE2025011103/Cellranger/"
    dataPath <- file.path(path, "F_KPC290")
    # A path containing the scStatistics results
    statPath <- file.path(path, "result")
    # The sample name
    
    sampleName <- "F_KPC290-example"
    
    # The author name or a string used to mark the report.
    authorName <- "Shen-Lab@SJTU"
    # A path used to save the results files
    savePath <- file.path(path, "result")
    
    # Run scStatistics
    stat.results <- runScStatistics(
        dataPath = dataPath,
        savePath = savePath,
        sampleName = sampleName,
        authorName = authorName,
        bool.runSoupx = F,
        genReport = T
    )
    '''
    ![image.png](https://img.haomeiwen.com/i18429961/d4fbb7861c9c39b3.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    
    注意,必须有这步才能进行后续的
    '''
    # Run scAnnotation
    anno.results <- runScAnnotation(
        dataPath = dataPath,
        statPath = statPath,
        savePath = savePath,
        authorName = authorName,
        sampleName = sampleName,
        geneSet.method = "average",
        # vars.to.regress = c("nCount_RNA", "mito.percent"),
        bool.runDiffExpr = T,
        bool.runCellClassify = T,
        bool.runCellSubtypeClassify = T,
        subtypeClassifyMethod = "Scoring",
        celltype.list = NULL,
        ct.templates = NULL,
        submodel.path = NULL,
        markers.path = NULL,
        unknown.cutoff = 0.3,
        subtype.umap = T,
        bool.runMalignancy = T,
        malignancy.method = "both", # "xgboost", "inferCNV", "both", recommend "both" for sample < 10000 cells
        bool.intraTumor = T,
        bool.runCellCycle = T,
        bool.runStemness = T,
        bool.runGeneSets = T,
        bool.runExprProgram = T,
        bool.runInteraction = T,
        genReport = T
    )
    '''
    跑完发现好像不是小鼠的,
    而且有个提示
    '''
    For a (much!) faster implementation of the Wilcoxon Rank Sum Test,
    (default method for FindMarkers) please install the presto package
    --------------------------------------------
    install.packages('devtools')
    devtools::install_github('immunogenomics/presto')
    --------------------------------------------
    After installation of presto, Seurat will automatically use the more 
    efficient implementation (no further action necessary).
    This message will be shown once per session
    
    '''
    听从建议安装
    ![image.png](https://img.haomeiwen.com/i18429961/2dd1200dfeb84784.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    报错
    重新换成小鼠的,仍然报错
    ![image.png](https://img.haomeiwen.com/i18429961/d6481a2691490451.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    When using repel, set xnudge and ynudge to 0 for optimal results
    Error in `[.data.frame`(coor.df, , coor.names[1]) : 
      undefined columns selected
    
    降级版本
    ![image.png](https://img.haomeiwen.com/i18429961/7d2303d7c9e0d1db.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    分析的内容很丰富,可以为初步探索节省时间
    ![image.png](https://img.haomeiwen.com/i18429961/7ac958278eaf90f4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    
    
    下面是恶性细胞识别
    [scCancer/vignettes/malignantCellIden.Rmd at master · czythu/scCancer · GitHub](https://kkgithub.com/czythu/scCancer/blob/master/vignettes/malignantCellIden.Rmd)
    重新降级了seurat以后还是不行
    
    可能是我光降级没重新加载sccancer包
    重新进入,加载发现
    Seurat v4 was just loaded with SeuratObject v5; disabling v5 assays and
    validation routines, and ensuring assays work in strict v3/v4
    compatibility mode
    再次重新安装之后跑完流程,非常快
    ![image.png](https://img.haomeiwen.com/i18429961/cbb177ad77e00db3.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
    
    
    
    
    
    

    相关文章

      网友评论

          本文标题:scCancer2

          本文链接:https://www.haomeiwen.com/subject/hgvumjtx.html