美文网首页
独立预后分析

独立预后分析

作者: 萍智医信 | 来源:发表于2021-08-11 20:21 被阅读0次
数据整理前格式clinical.png

-删掉unknow,空白
-Gender:FEMALE为0,MALE为1
-Grade:删掉GX,G1为1,G2为2,依次类推
-Stage:Stage IA和Stage IB均改为1,依次类推


数据整理后最终格式clinical.png
输入文件risk.png
library(survival)      #引用包
setwd("E:\\Master research")     #设置工作目录
risk=read.table("risk.txt", header=T, sep="\t", check.names=F, row.names=1)       #读取风险文件
cli=read.table("clinical.txt", header=T, sep="\t", check.names=F, row.names=1)    #读取临床文件
sameSample=intersect(row.names(cli),row.names(risk))
risk=risk[sameSample,]
cli=cli[sameSample,]
rt=cbind(futime=risk[,1],fustat=risk[,2],cli,riskScore=risk[,(ncol(risk)-1)])

#单因素独立预后分析
uniTab=data.frame()
for(i in colnames(rt[,3:ncol(rt)])){
     cox <- coxph(Surv(futime, fustat) ~ rt[,i], data = rt)
     coxSummary = summary(cox)
     uniTab=rbind(uniTab,
                  cbind(id=i,
                  HR=coxSummary$conf.int[,"exp(coef)"],
                  HR.95L=coxSummary$conf.int[,"lower .95"],
                  HR.95H=coxSummary$conf.int[,"upper .95"],
                  pvalue=coxSummary$coefficients[,"Pr(>|z|)"])
                  )
}
write.table(uniTab,file="uniCox.txt",sep="\t",row.names=F,quote=F)

#多因素独立预后分析
multiCox=coxph(Surv(futime, fustat) ~ ., data = rt)
multiCoxSum=summary(multiCox)
multiTab=data.frame()
multiTab=cbind(
             HR=multiCoxSum$conf.int[,"exp(coef)"],
             HR.95L=multiCoxSum$conf.int[,"lower .95"],
             HR.95H=multiCoxSum$conf.int[,"upper .95"],
             pvalue=multiCoxSum$coefficients[,"Pr(>|z|)"])
multiTab=cbind(id=row.names(multiTab),multiTab)
write.table(multiTab,file="multiCox.txt",sep="\t",row.names=F,quote=F)


############绘制森林图函数############
bioForest=function(coxFile=null,forestFile=null,forestCol=null){
        #读取输入文件
        rt <- read.table(coxFile, header=T, sep="\t", check.names=F, row.names=1)
        gene <- rownames(rt)
        hr <- sprintf("%.3f",rt$"HR")
        hrLow  <- sprintf("%.3f",rt$"HR.95L")
        hrHigh <- sprintf("%.3f",rt$"HR.95H")
        Hazard.ratio <- paste0(hr,"(",hrLow,"-",hrHigh,")")
        pVal <- ifelse(rt$pvalue<0.001, "<0.001", sprintf("%.3f", rt$pvalue))
        
        #输出图形
        pdf(file=forestFile, width=6, height=4.3)
        n <- nrow(rt)
        nRow <- n+1
        ylim <- c(1,nRow)
        layout(matrix(c(1,2),nc=2),width=c(3,2.5))
        
        #绘制森林图左边的临床信息
        xlim = c(0,3)
        par(mar=c(4,2.5,2,1))
        plot(1,xlim=xlim,ylim=ylim,type="n",axes=F,xlab="",ylab="")
        text.cex=0.8
        text(0,n:1,gene,adj=0,cex=text.cex)
        text(1.5-0.5*0.2,n:1,pVal,adj=1,cex=text.cex);text(1.5-0.5*0.2,n+1,'pvalue',cex=text.cex,font=2,adj=1)
        text(3.1,n:1,Hazard.ratio,adj=1,cex=text.cex);text(3.1,n+1,'Hazard ratio',cex=text.cex,font=2,adj=1)
        
        #绘制森林图
        par(mar=c(4,1,2,1),mgp=c(2,0.5,0))
        xlim = c(0,max(as.numeric(hrLow),as.numeric(hrHigh)))
        plot(1,xlim=xlim,ylim=ylim,type="n",axes=F,ylab="",xaxs="i",xlab="Hazard ratio")
        arrows(as.numeric(hrLow),n:1,as.numeric(hrHigh),n:1,angle=90,code=3,length=0.05,col="darkblue",lwd=2.5)
        abline(v=1,col="black",lty=2,lwd=2)
        boxcolor = ifelse(as.numeric(hr) > 1, forestCol, forestCol)
        points(as.numeric(hr), n:1, pch = 15, col = boxcolor, cex=1.5)
        axis(1)
        dev.off()
}
############绘制森林图函数############

bioForest(coxFile="uniCox.txt", forestFile="uniForest.pdf", forestCol="green")
bioForest(coxFile="multiCox.txt", forestFile="multiForest.pdf", forestCol="red")

相关文章

网友评论

      本文标题:独立预后分析

      本文链接:https://www.haomeiwen.com/subject/hmtfbltx.html