学习区、心流、喜欢,说的是已知和未知、简单和困难、熟悉和意外的搭配 —— 从信息论的角度来说,它们说的都是“旧信息”和“新信息”的配比!
准确些,这个配比应该是多少呢?
以前并没有量化这些理论,我们只是泛泛地说要加入一定的难度和意外。今天要讲的这个研究,恰恰告诉我们一个神奇的答案,说这个问题是有最优数值解的:这个数值是15.87%。
亚利桑那大学和布朗大学的研究者刚刚贴出一篇论文的预印本,叫《最优学习的85%规则》[1]。这篇论文还没有正式发表,《科学美国人》上的一个博客已经率先报道 [2],Twitter 上也有好几个人讨论。
万维纲老师在《精英日课3》中,仔细研究、解读了这篇论文,他感觉非常新颖而且非常重要,万老师预判此篇文章将来会获得大量的引用。先说说这篇论文到底说了什么。
我们知道现在人工智能本质上是机器学习。我们弄一个神经网络,用大量的数据去训练这个网络,让网络学会自己做判断。网络内部有大量参数随着训练不断变化,就相当于人脑在学习中提高技艺。
每一次训练,都是先让网络对数据做个自己的判断,然后数据再给它一个反馈。如果网络判断正确,它就会加深巩固现有的参数;如果判断错了,它就调整参数。这跟人脑的学习也很像:只有当你判断错误的时候,才说明这个知识对你是新知识,你才能学习提高。
研究者可以决定用什么难度的数据去“喂”这个网络。如果数据难度太低,网络每次都能猜对,那显然无法提高判断水平;如果数据难度太高,网络总是猜错,那它的参数就会东一下西一下变来变去,就会无所适从。这项研究问的问题是,每次训练中网络判断的错误率是多少,才是最优的呢?
研究者首先用了一个比较简单的数学模型做理论推导,又用了一个AI神经网络学习算法和一个模拟生物大脑的神经网络模型做模拟实验,结果得出一个精确解:15.87%。
也就是说,当你训练一个东西的时候,你给它的内容中应该有大约85%是它熟悉的,有15%是它感到意外的。
研究者把这个结论称为“85%规则”,我们干脆就把15.87%叫做“最佳意外率”。这个数值就是学习的“甜蜜点”。
网友评论