特征交叉一种合成特征的方法,可以在多维特征数据集上,进行很好的非线性特征拟合。假设一个数据集有特征x1x1和x2x2,那么引入交叉特征值x3x3,使得:
x3=x1x2
那么最终的表达式为:
y=b+w1x1+w2x2+w3x3
- 如何构造新特征?
(1)将一个特征与其本身或其他特征相乘(称为特征组合)。
(2)两个特征相除。
(3)对连续特征进行分桶,以分为多个区间分箱。
image.png
无法找到一个直线把蓝色和黄色的点分离开,此时就等使用特征交叉的方式,进行拟合。当然,也可以使用神经网络。
特征交叉的方式
使用One-Hot向量的方式进行特征交叉。这种方式一般适用于离散的情况,很少用于连续的数据集上。我们可以把特征交叉看成数据的逻辑与操作。
binned_latitude(lat) = [
0 < lat <= 10
10 < lat <= 20
20 < lat <= 30
]
binned_longitude(lon) = [
0 < lon <= 15
15 < lon <= 30
]
特征交叉本质上是一个笛卡尔积,两个特征列进行笛卡尔积。笛卡尔积中,如果同时满足两者的条件,则结果为1;否则为0,因此这种方式更加适合离散型的数据特征。一般来说,先把数据进行分档处理,再把分档的结果进行特征交叉,此时可以获得更好的数据特征,分档处理可以对数据降维,从而极大地简化计算量。
- 特征的连续值在不同的区间的重要性是不一样的
binned_latitude_X_longitude(lat, lon) = [
0 < lat <= 10 AND 0 < lon <= 15
0 < lat <= 10 AND 15 < lon <= 30
10 < lat <= 20 AND 0 < lon <= 15
10 < lat <= 20 AND 15 < lon <= 30
20 < lat <= 30 AND 0 < lon <= 15
20 < lat <= 30 AND 15 < lon <= 30
]
- 特征交叉的典型应用:
比如在地图的方面的处理中,需要用到特征交叉。下图的房价和经纬度中,单纯的给出经度或者纬度,都不能直接反应房价和地理位置的关系。更好的方式为经度和纬度交叉点,才能表示位置。
image.png
图片中,先对数据进行分档处理,也就是精度和纬度分别分割成100的数据段,然后把分段后的数据列进行特征交叉,那么每个房屋会对应一个10000维的特征向量,二维的位置信息会转化成一维的位置向量,只有精确的位置点的数据才是1,其余的都是0











网友评论