我虽然很喜欢模式识别和机器学习,但我暂时并不希望在这上面做深入的研究,只想把别人研究好的成熟的理论用在计算机视觉任务上。比如SVM,Adaboost,EM,朴素贝叶斯,K近邻,决策树等等。能够知道每种算法的原理,而并不想深究其实现过程以及理论证明。比如SVM,我想知道的是这种算法如何实现分类,有哪几种类型,每种适合什么样的分类任务,对应的参数的意义是什么。这样我在使用SVM-Light或者libsvm的时候就知道该怎么选用参数,怎么使用学习到的系数。从这个角度看这本书很适合我。当然也适合那些在想在机器学习方面做深入研究的人作为入门教材,我想对原理了解一二之后,阅读大部头或者原著肯定会轻松很多。
机器学习必读《模式识别与机器学习》,因为它内容选取得当。书中所介绍的所有模型以及算法,放到今天,依然是理解学习ML最最基本的组成部分,这些内容,对于读者了解更高级的算法,几乎都是必不可少的。这本书并没有试图涵盖当时所有的机器学习算法,而是精选了ML里面最本质最fundamental的方法,由此可以看出,作者对于这个领域的驾驭能力还是非常高的,准确的预见到了那些非常有生命力的模型,所以,如果你是一名ML的初学者的话,读这本书,即使过了十年,但是依然不会过时。
PRML《模式识别与机器学习》中英文PDF+程序代码+习题解答+笔记总结:《Pattern Recognition and Machine Learning》中文翻译版:《模式识别与机器学习》PDF,476页,带书签目录,文字可以复制。《Pattern Recognition and Machine Learning》英文PDF,758页,带书签目录,文字可以复制。《PRML习题答案》完整版PDF,254页,带书签目录,文字可以复制。 配套《PRML源代码》。 配套《PRML学习笔记》。 配套《PRML勘误》。
下载: https://pan.baidu.com/s/1vniJ562spBKkMuyAVvT2mw 提取码: abwf
第1章的导论。第2章的概率分布,写的非常好,尽管只有几个简单的分布,但是对共轭先验的概念以及指数分布族介绍的很清楚,这一章是本书的基础。第3章以及第4章的线性分类和回归一个非常好的方面就是都是采用Bayesisan的观点来看,应该是理解Baysian思想的基础。
第5章 神经网络,深度学习基础。第6章 Guassian Process,一种非参数的Bayessian方法,统计学领域研究热门。
第7章 SVM。第8章 是现代基于图模型的基础,需要仔细阅读,这一章概念介绍的非常清楚,很多的machine learning 和computer vision 的paper现在采用的图模型的表示都可以从这里得到解释。第9章 EM 算法,从最简单的K-mean出发,推导高斯混合模型,再到EM算法的推广,每一节都是精品。第10章 近似推断,第一节的近似推断的基本原理以及第二节的一个例子。采用mean-field 、 变分的方法。第11章采样,写的很精彩。第8章到第11章,学习最基本的Topic model:LDA第12章是PCA及一些改进,用到的时候再看也来得及。第13章是HMM 模型和LDS,这两个的图模型是一样的。建议好好学习一下HMM,应该还有其他的资料供参考。第14章是整合。
探索机器学习,使用Scikit-Learn全程跟踪一个机器学习项目的例子;探索各种训练模型;使用TensorFlow库构建和训练神经网络,深入神经网络架构,包括卷积神经网络、循环神经网络和深度强化学习,学习可用于训练和缩放深度神经网络的技术。
《机器学习实战:基于Scikit-Learn和TensorFlow》中文PDF,带目录,文字能够复制;英文PDF,564页,带目录,文字能够复制;配套源代码。
下载: https://pan.baidu.com/s/14G_0aeMh8qiq4TtIvpefWw 提取码: b46k
主要分为两个部分。第一部分为第1章到第8章,涵盖机器学习的基础理论知识和基本算法——从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法;第二部分为第9章到第16章,探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用TensorFlow搭建和训练深度神经网络,以及卷积神经网络。
统计学习方法即机器学习方法,是计算机及其应用领域的一门重要学科。《统计学习方法第2版》分为监督学 习和无监督学习两篇,全面系统地介绍了统计学习的主要方法。包括感知机、k 近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM 算法、隐马尔可夫模型和条件随机场,以及聚类方法、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配和 PageRank 算法等。除有关统计学习、监督学习和无监督学习的概论和总结的四章外,每章介绍一种方法。叙述力求从具体问题或实例入手, 由浅入深,阐明思路,给出必要的数学推导,便于掌握统计学习方法的实质,学会运用。 介绍了一些相关研究,给出了少量习题, 适用于从事文本数据挖掘、信息检索及自然语言处理等专业的研发人员参考。
《统计学习方法第2版》PDF+代码课件:《统计学习方法第2版》PDF,484页,带书签,文字可复制;配套部分源代码;配套部分课件。
下载: https://pan.baidu.com/s/1Xyo5AwCSKB9FaUxLIm69Cg 提取码: qpf1
建议统计学习方法路线,ng课程入门,知道有哪些算法,大致怎么做,然后去kaggle打个入门赛,别做特征工程,把会的算法全用上。然后放下比赛,开始读《统计学习方法第2版》,同时看机器学习基石或其他比较数学化的进阶课程。
这一步不需要你敲代码,你要会的是滚瓜烂熟的推导,做到这一步,再去kaggle参加奖金赛,阅读kernel,学习state of the art 模型,学习特征工程,再在学习过程中阅读最新的论文或者经典的论文,不断迭代这个过程,有现成的轮子不用,非得费那个劲,除非你科班毕业,代码能力扎实,不然你能不能从头实现一遍决策树对你找不找到工作没有任何一毛钱关系。笔试不会考你如何实现hmm,只会考数据结构与算法,面试只会让你推导。











网友评论