企业数据标准项目的实施,要根据业界经验和企业实际情况确定实施范围,并根据优先级和难易度制定计划。需要从企业业务域、业务活动、对象实体、实体关系等方面层层递进,逐步展开。对于数据梳理的方法主要用到IRP(企业信息资源规划)和数据仓库的数据梳理法。这两种方式我在《主数据管理实施四部曲概论》的文章进行过分享,有兴趣可以关注。
企业数据标准梳理一般需要以下步骤:

首先,对企业业务域进行定义,并对每个业务域中的业务活动进行梳理,同时需要收集各类业务单据、用户视图,梳理每个单据和用户视图的数据对象。
其次,针对数据对象的进行分析,明确每个数据实体所包含的数据项,同时,梳理并确定出该业务域中所涉及的数据指标和指标项。分析并定义每个数据实体或指标的数据项标准,包括:数据项的名称、编码、类型、长度、业务含义、数据来源、质量规则、安全级别、域值范围、管理部门等。
第三,梳理和明确所有数据实体、数据指标的关联关系,并对数据之间的关系进行标准化定义。数据关系也是数据标准管理的内容。
第四,通过以上梳理、分析和定义,确定出主数据标准管理的范围。
数据标准梳理和建设的方法并不难掌握,关键是建设过程中需要收集并整理大量的业务规范、制度章程、法律法规、监管规定、国家标准,并将这些规定具象到数据标准定义的信息项中。对于一个从未做过数据标准的实施团队而言,这将意味着巨大的工作量。
数据标准管理组织
数据标准管理是企业数据治理的一部分,数据标准管理是一个涉及范围广、业务复杂、数据繁杂的工程。数据标准管理的实施绝非是一个部门的事情,不能在企业的单一部门得到解决。需要从整个组织考虑,建立专业的数据治理组织体系,制定企业数据战略和实施路线图,明确各阶段数据标准工作的目标和内容,并监督及考核数据标准的贯彻与执行。
数据标准管理组织或数据治理组织从职能划分上可以分为三层
1、数据标准管理委员会,即数据治理的决策层,主要负责制定企业数据战略、把控数据治理的总体策略,审查数据标准的贯彻执行情况。
2、数据标准管理办公室,是数据治理的经营管理层,主要负责企业数据标准的制定、审查数据质量,贯彻数据标准落地。
3、数据标准执行层或业务操作层,主要负责数据标准的贯彻执行,并为数据标准的编制和优化提供数据和意见。
企业数据标准工具选型
数据标准建设工作量还是比较大的,完全依靠人工不太现实,所以需要一套完善、易用的数据标准管理工具帮助我们将数据标准建设工作落地。
数据标准管理工具应包括:标准分类管理、标准增删改查、标准导入导出、标准评审、标准发布、标准版本管理、标准落地映射、标准落地评估、标准监控等功能。同时为更好的保障数据标准的落地,最好结合元数据管理工具一起使用。
亿信华辰数据标准管理平台ESDataStandard提供了一套完整的数据标准管理流程及办法,通过统一的数据标准制定和发布等一系列的活动,结合制度约束、系统控制等手段,实现企业大数据平台数据的完整性、有效性、一致性、规范性、开放性和共享性管理。

想做大数据治理,首先要把数据标准做好,否则匆忙建设各种数据仓库、数据集市,最后发现标准有问题,质量不高,这时候再去建数据标准就会导致投资浪费问题。
网友评论