决策树——ID3算法应用实例

作者: 今天没捡垃圾 | 来源:发表于2020-04-14 15:14 被阅读0次

在ID3决策树归纳方法中,通常是使用信息增益方法来帮助确定生成每个节点时所应采用的合适属性。这样就可以选择具有最高信息增益(熵减少的程度最大)的属性最为当前节点的测试属性,以便对之后划分的训练样本子集进行分类所需要的信息最小,也就是说,利用该属性进行当前(节点所含)样本集合划分,将会使得所产生的样本子集中的“不同类别的混合程度”降为最低。因此,采用这样一种信息论方法将有效减少对象分来所需要的次数,从而确保所产生的决策树最为简单。

一、实验目的

1、理解分类

2、掌握分类挖掘算法ID3

3、为改进ID3打下基础

二、实验内容

1、选定一个数据集(可以参考教学中使用的数据集)

2、选择合适的实现环境和工具实现算法 ID3

3、给出分类规则

三、实验原理

决策树是一种最常见的分类算法,它包含有很多不同的变种,ID3算法是其中最简单的一种。ID3算法中最主要的部分就是信息熵和信息增益的计算。

相关文章

  • 决策树简记

    具有不同划分准则的算法决策树原理剖析及实现(ID3)理解决策树算法(实例详解)-ID3算法与C4.5算法 ID3(...

  • 理论-决策树

    ID3算法Building Decision Trees in Python如何实现并应用决策树算法?

  • 决策树Decision Tree

    决策树是一种解决分类问题的算法 。 常用的 决策树算法有: ID3 算法 ID3 是最早提出的决策树算法,他...

  • 决策树和随机森林

    随机森林和GBDT算法的基础是决策树 而建立决策树的算法由很多,ID3,C4.5,CART等, ID3:ID3算法...

  • JS简单实现决策树(ID3算法)

    推荐阅读:ID3算法 wiki决策树算法及实现完整示例代码:JS简单实现决策树(ID3算法)_demo.html ...

  • day10-决策树

    今天学了决策树的基本知识。 基于信息论的决策树算法有:ID3, CART, C4.5等算法。 ID3 算法是根...

  • 数据科学(机器学习: 决策树(ID3算法 ))

    决策树构建 ID3算法 ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。 从根结点...

  • 机器学习之旅—决策树(3)

    从 ID3 到 C4.5 ID3 定义 ID3 算法的核心是在决策树各个子节点上应用信息增益准则选择特征,递归的构...

  • 100天搞定机器学习|Day23-25 决策树及Python实现

    算法部分不再细讲,之前发过很多: 【算法系列】决策树 决策树(Decision Tree)ID3算法 决策树(De...

  • 决策树——ID3算法应用实例

    在ID3决策树归纳方法中,通常是使用信息增益方法来帮助确定生成每个节点时所应采用的合适属性。这样就可以选择具有最高...

网友评论

    本文标题:决策树——ID3算法应用实例

    本文链接:https://www.haomeiwen.com/subject/kehtvhtx.html