SVM概述

作者: yousa_ | 来源:发表于2020-09-19 17:14 被阅读0次

问:SVM中什么时候用线性核什么时候用高斯核?
参考回答:
当数据的特征提取的较好,所包含的信息量足够大,很多问题是线性可分的那么可以采用线性核。若特征数较少,样本数适中,对于时间不敏感,遇到的问题是线性不可分的时候可以使用高斯核来达到更好的效果。

问:什么是支持向量机,SVM与LR的区别?
参考回答:
支持向量机为一个二分类模型,它的基本模型定义为特征空间上的间隔最大的线性分类器。而它的学习策略为最大化分类间隔,最终可转化为凸二次规划问题求解。
LR是参数模型,SVM为非参数模型。LR采用的损失函数为logisticalloss,而SVM采用的是hingeloss。在学习分类器的时候,SVM只考虑与分类最相关的少数支持向量点。LR的模型相对简单,在进行大规模线性分类时比较方便。

问:SVM的作用,基本实现原理;
SVM可以用于解决二分类或者多分类问题,此处以二分类为例。SVM的目标是寻找一个最优化超平面在空间中分割两类数据,这个最优化超平面需要满足的条件是:离其最近的点到其的距离最大化,这些点被称为支持向量。
解析:建议练习推导SVM,从基本式的推导,到拉格朗日对偶问题。

问:拉格朗日对偶问题

问:SVM的硬间隔,软间隔表达式


硬间隔
软间隔

解析:不同点在于有无引入松弛变量

问:SVM使用对偶计算的目的是什么,如何推出来的,手写推导
目的有两个:一是方便核函数的引入;二是原问题的求解复杂度与特征的维数相关,而转成对偶问题后只与问题的变量个数有关。由于SVM的变量个数为支持向量的个数,相较于特征位数较少,因此转对偶问题。通过拉格朗日算子发使带约束的优化目标转为不带约束的优化函数,使得W和b的偏导数等于零,带入原来的式子,再通过转成对偶问题。

问:SVM的物理意义是什么
构造一个最优化的超平面在空间中分割数据

问:如果给你一些数据集,你会如何分类(我是分情况答的,从数据的大小,特征,是否有缺失,分情况分别答的)

根据数据类型选择不同的模型,如Lr或者SVM,决策树。假如特征维数较多,可以选择SVM模型,如果样本数量较大可以选择LR模型,但是LR模型需要进行数据预处理;假如缺失值较多可以选择决策树。选定完模型后,相应的目标函数就确定了。还可以在考虑正负样例比比,通过上下集采样平衡正负样例比。
解析:需要了解多种分类模型的优缺点,以及如何构造分类模型的步骤

相关文章

网友评论

      本文标题:SVM概述

      本文链接:https://www.haomeiwen.com/subject/kkughktx.html