详解Handler

作者: Chase_stars | 来源:发表于2019-07-07 12:05 被阅读17次

生活有度,人生添寿 — 书摘

写在前面

对于Android开发者来说,Handler一定不陌生,在日常开发中会经常用到它,我们都知道Android主线程不能处理耗时任务,否则会容易发生ANR,但是在子线程执行完耗时任务,要想更新UI怎么办呢?不要慌,Android提供了一个消息机制Handler来解决这个问题。

Handler的作用是跨线程通信,当子线程中进行耗时操作后需要更新UI时,通过Handler将有关UI的操作切换到主线程中执行。

分别介绍下四要素:

  • Message(消息):需要被传递的消息,其中包含了消息Id,消息处理对象以及消息处理的数据等,由MessageQueue统一列队,最终由Handler处理。
  • MessageQueue(消息队列):用来存放Handler发送过来的消息,内部通过单链表的数据结构来维护消息队列,等待Looper的抽取。
  • Handler(处理者):负责Message的发送及处理,通过Handler的sendMessage向MessageQueue发送消息,通过handleMessage处理相应的消息事件。
  • Looper(消息泵):通过Looper.prepare()创建实例,通过Looper.loop()不断的从MessageQueue中抽取消息,按分发机制将消息分发给目标处理者。

用法

下面用一个简单的Demo来演示一下Handler该如何使用,这里开启了一个子线程sleep一秒来模拟任务,在子线程中调用sendEmptyMessage发送一条消息,当Handler的handleMessage收到该条消息时,弹出一个Toast。

public class MainActivity extends AppCompatActivity implements View.OnClickListener {
    private Button mStartTask;

    private Handler mHandler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            if (msg.what == 1) {
                Toast.makeText(MainActivity.this, "更新UI", Toast.LENGTH_SHORT).show();
            }
        }
    };

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        initView();
    }

    private void initView() {
        mStartTask = findViewById(R.id.btn_start_task);
        mStartTask.setOnClickListener(this);
    }

    @Override
    public void onClick(View v) {
        switch (v.getId()) {
            case R.id.btn_start_task:
                new Thread(new Runnable() {
                    @Override
                    public void run() {
                        try {
                            Thread.sleep(1000);
                            mHandler.sendEmptyMessage(1);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }).start();
                break;
        }
    }
}

学会了使用,那么问题来了,让我们带着问题去分析源码:
1.明明是在子线程发送的,是如何切换至主线程的呢?
2.sendEmptyMessage发送的消息,handleMessage是如何接收到的呢?

源码

一.首先来看Handler是如何创建的,初始化的时候都做了什么?

1.从Handler的构造函数开始
    /**
     * Default constructor associates this handler with the {@link Looper} for the
     * current thread.
     *
     * If this thread does not have a looper, this handler won't be able to receive messages
     * so an exception is thrown.
     */
    public Handler() {
        this(null, false);
    }

    /**
     * Constructor associates this handler with the {@link Looper} for the
     * current thread and takes a callback interface in which you can handle
     * messages.
     *
     * If this thread does not have a looper, this handler won't be able to receive messages
     * so an exception is thrown.
     *
     * @param callback The callback interface in which to handle messages, or null.
     */
    public Handler(Callback callback) {
        this(callback, false);
    }

    /**
     * Use the provided {@link Looper} instead of the default one and take a callback
     * interface in which to handle messages.
     *
     * @param looper The looper, must not be null.
     * @param callback The callback interface in which to handle messages, or null.
     */
    public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }

    /**
     * Use the {@link Looper} for the current thread
     * and set whether the handler should be asynchronous.
     *
     * Handlers are synchronous by default unless this constructor is used to make
     * one that is strictly asynchronous.
     *
     * Asynchronous messages represent interrupts or events that do not require global ordering
     * with respect to synchronous messages.  Asynchronous messages are not subject to
     * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
     *
     * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
     * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
     *
     * @hide
     */
    public Handler(boolean async) {
        this(null, async);
    }

    /**
     * Use the {@link Looper} for the current thread with the specified callback interface
     * and set whether the handler should be asynchronous.
     *
     * Handlers are synchronous by default unless this constructor is used to make
     * one that is strictly asynchronous.
     *
     * Asynchronous messages represent interrupts or events that do not require global ordering
     * with respect to synchronous messages.  Asynchronous messages are not subject to
     * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
     *
     * @param callback The callback interface in which to handle messages, or null.
     * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
     * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
     *
     * @hide
     */
    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        // 得到当前Looper,但有一点需要注意,只有先Looper.prepare(),才会创建新的Looper,
        // 也就是说Looper.prepare()一定在这之前执行过了,否则会直接抛出异常
        // Looper.prepare()是在哪里调用的呢?
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        // 创建Looper实例时,Looper会创建一个MeesageQueue,
        // 直接把Looper的MessageQueue拿出来使用
        mQueue = mLooper.mQueue;
        // 为Callback赋值
        mCallback = callback;
        mAsynchronous = async;
    }

从上面代码可以看出,无论是调用无参数的构造函数还是带参数的构造函数,最终都会调用带两个参数的构造函数,带两个参数的构造函数内部做了一些初始化的事情,为其一些变量赋值。

2.何处调用Looper.prepare()
public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("<pre-initialized>");
        
        // 划重点
        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

以上代码是ActivityThread类中的main函数,在这个函数中Android系统已经帮我们调用了Looper.prepare(),就是Looper.prepareMainLooper()。

3. Looper.prepareMainLooper()做了什么
    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

    /**
     * Initialize the current thread as a looper, marking it as an
     * application's main looper. The main looper for your application
     * is created by the Android environment, so you should never need
     * to call this function yourself.  See also: {@link #prepare()}
     */
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

从以上代码看到prepareMainLooper内部其实先调用了prepare,prepare内部会创建一个新的Looper对象,并放入ThreadLocal;然后又调用了myLooper,myLooper内部会从ThreadLocal得到Looper对象,并赋值给sMainLooper。

那么Looper的构造函数做了什么呢?创建了一个新的MessageQueue实例,并得到当前所在线程。

既然用到了ThreadLocal,就介绍一下它是用来干什么的,ThreadLocal 为解决多线程程序的并发问题提供了一种新的思路。使用这个工具类可以很简洁地编写出优美的多线程程序。当使用ThreadLocal 维护变量时,ThreadLocal 为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。实则ThreadLocal.set设置的值是与当前线程进行绑定了的。

所以就能得出结论,Looper.prepare()函数就是将Looper与当前线程进行绑定,ThreadLocal就是负责绑定。

二.Handler如何发送和接收消息

1.Handler开始sendMessage
    /**
     * Pushes a message onto the end of the message queue after all pending messages
     * before the current time. It will be received in {@link #handleMessage},
     * in the thread attached to this handler.
     *  
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.
     */
    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    /**
     * Enqueue a message into the message queue after all pending messages
     * before (current time + delayMillis). You will receive it in
     * {@link #handleMessage}, in the thread attached to this handler.
     *  
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.  Note that a
     *         result of true does not mean the message will be processed -- if
     *         the looper is quit before the delivery time of the message
     *         occurs then the message will be dropped.
     */
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    /**
     * Enqueue a message into the message queue after all pending messages
     * before the absolute time (in milliseconds) <var>uptimeMillis</var>.
     * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
     * Time spent in deep sleep will add an additional delay to execution.
     * You will receive it in {@link #handleMessage}, in the thread attached
     * to this handler.
     * 
     * @param uptimeMillis The absolute time at which the message should be
     *         delivered, using the
     *         {@link android.os.SystemClock#uptimeMillis} time-base.
     *         
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.  Note that a
     *         result of true does not mean the message will be processed -- if
     *         the looper is quit before the delivery time of the message
     *         occurs then the message will be dropped.
     */
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        // 这行代码非常重要
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

从以上代码看出,最终调到了enqueueMessage,内部将当前的Handler赋值给了Message中的target变量,这样就将每个调用sendMessage的Handler与Message进行绑定;返回值为queue.enqueueMessage(),也就是说最终调到了MessageQueue的enqueueMessage,将这个消息加入到MessageQueue中。

2.MessageQueue添加消息
boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

上面的代码就是把消息放入消息队列,如果添加消息成功会返回true,失败则返回false,等待Looper来读取。

如果是delay的消息并不会先等待一段时间在放入消息队列,而是直接进入并阻塞当前线程,然后将其delay的时间与队头进行比较,按照触发时间进行排序,如果触发时间更近则放入队头,保证队头的时间最小,队尾的时间最大,此时,如果对头的Message正是被delay的,则将当前线程堵塞一段时间,等待足够的时间再唤醒执行该Message,否则唤醒后直接执行。

3.Looper.loop()读取消息

众所周知,Handler内部维护了Looper的,通过Looper.loop()开启消息循环,不断的从MessageQueue中读取消息,最后调用handleMessage来处理消息。

不知细心的同学有没有发现Looper.loop()是何时调用的,其实是在ActivityThread类的main函数中调用的,在这个函数中Android系统也已经帮我们调用好了Looper.loop()。

那么就来看看Looper.loop()都做了什么吧。

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        // 得到与主线程绑定的Looper
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        
        // 开始死循环
        for (;;) {
            // 从MessageQueue中读取消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                // 这行代码非常重要,这里的dispatchMessage则又回到了调用sendMessage的Handler中。
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

在这个函数中,首先拿到与主线程绑定的Looper,然后开始死循环,并在死循环中不断调用MessageQueue的next函数读取消息,当得到消息后会通过Message的target调用dispatchMessage派发消息。Message的target是Handler的sendMessage最后调用enqueueMessage中将当前Handler赋值给target的,所以也就是调用的Handler的dispatchMessage。

4.Handler处理消息

现在再将视线回到Handler,通过Looper.loop()读取出来的消息投递给了Handler的dispatchMessage。

    /**
     * Callback interface you can use when instantiating a Handler to avoid
     * having to implement your own subclass of Handler.
     */
    public interface Callback {
        /**
         * @param msg A {@link android.os.Message Message} object
         * @return True if no further handling is desired
         */
        public boolean handleMessage(Message msg);
    }

    /**
     * Subclasses must implement this to receive messages.
     */
    public void handleMessage(Message msg) {
    }

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        // msg.callback就是Runnable对象
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
   
    private static void handleCallback(Message message) {
        // 其实就是让Runnable执行
        message.callback.run();
    }

首先来看dispatchMessage,msg.callback就是Runnable对象,如果不为null,就会调用handleCallback让Runnable跑起来;mCallback是Callback接口,如果不为null就会调用Callback的handleMessage,否则就会执行Handler自己的handleMessage。

5.回到主线程

到这里Handler的工作机制就算分析完了,在子线程中Handler发送消息的时候就已经和Message进行了绑定,在通过Looper.loop()开启消息轮询的时候,当调用MessageQueue的next得到Message的时候,就会调用与Message绑定的Handler对象执行dispatchMessage,最终调用handleMessage,由于Looper对象是在主线程创建的,Handler也是在主线程中创建的,所以自然就从子线程切换到了主线程。

6.分析Message

Message作为消息,也必要了解一下,它其实可以理解为一个Bean。

在实际项目中会用到大量的Message,为了避免重复创建Message,Message内部提供了一个obtain()方法,它会从消息池中返回一个新的Message实例。

    private static final Object sPoolSync = new Object();
    private static Message sPool;
    private static int sPoolSize = 0;

    /**
     * Return a new Message instance from the global pool. Allows us to
     * avoid allocating new objects in many cases.
     */
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

 /**
     * Recycles a Message that may be in-use.
     * Used internally by the MessageQueue and Looper when disposing of queued Messages.
     */
    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;

        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }

从以上代码可以看到,sPool就是一个静态的变量,若为空则创建一个新的Message实例,否则会直接返回sPool,在回收Message时,会将Message重置并赋值给sPool,这样就有效的避免了重复创建Message,从而达到复用的目的。

总结

具体流程.png
  • Handler.sendMessage()时会通过MessageQueue.enqueueMessage()向MessageQueue中添加一条消息,MessageQueue会按照delay时间进行排序,保证队头时间最小,队尾时间最大,如果队头的时间是delay的,则将当前线程堵塞一段时间,等待足够的时间唤醒当前线程继续执行。
  • 通过Looper.loop()开启消息循环后,不断轮询调用MessageQueue.next(),当读取的消息不为空时,就会调用目标Handler.dispatchMessage()去传递消息。
  • 目标Handler收到消息后调用Handler.handleMessage()处理消息。

相关文章

网友评论

    本文标题:详解Handler

    本文链接:https://www.haomeiwen.com/subject/lgrmhctx.html