13讲by王畅

作者: 只是不想输 | 来源:发表于2019-03-24 17:55 被阅读0次

守恒定律

知识点

  • 动量守恒、角动量守恒的直观感受
  • 动量守恒的方程
  • 角动量守恒的方程
    • 约定好正方向
    • 初态时,写出各个物件的角动量L_{i}(注意正负号)
    • 末态时,写出各个物件的角动量L_{j}(注意正负号)
    • 然后,列方程为:\sum_{i}L_{i}=\sum_{j}L_{j}
tip

  • 相比对单词的辨析进行死记硬背,不如记几个例句。
  • 相比对物理概念进行全方位多角度的分析,不如记几个模型。
表达题

  • 动量守恒和角动量守恒的充要条件分别是

解答:动量守恒的条件是:1.系统不受外力2.合外力做功为0
3.所受力在某一方向上平衡,称在这一方向动量守恒
角动量守恒的条件是:合外力矩为0(例如合外力为0,或者所受力为对旋转定轴作用,如细杆模型。)原理是:物体对杆一端打击,会使所受力作用到转动中心,这时位矢为0,因此合外力矩为0。

  • 借助具体例子培养直观认识。动量守恒的充要条件是合外力为零。作为近似,实际生活中,内力比外力强很多时,也认为动量守恒。下面常见的物理模型中,

    (1) 爆炸瞬间;
    (2) 两个小球非弹性碰撞(部分动能转化为内能)瞬间;
    (3) 子弹打击用轻绳悬挂的小球瞬间;
    (4) 光滑地面上有车,车上有人,人在车内走动。
    (5) 小球撞击墙壁反弹。
    (6) 子弹打击用轻杆悬挂的小球瞬间;
    请思考,其中动量守恒的有( ),记住这些模型,会减少很多困扰。

解答:(1)(2)(3)(4)动量守恒。
(1)是因为爆炸瞬间内力远大于外力,近似看作外力为0
(2)是因为尽管有能量损失,但在某一方向动量守恒
(3)(4)是因为合外力为0,因此合外力矩为0。

  • 借助具体例子培养直观认识。角动量守恒的充要条件是合外力矩为零。下面常见的物理模型中,
    (1) 地球绕着太阳转;
    (2) 光滑桌面上用轻绳拽着做圆周运动;
    (3) 光滑冰面上的芭蕾舞旋转;
    (4) 子弹打击用轻杆悬挂着的小球瞬间。
    (5) 小球打击旋转的滑轮的瞬间。
    (6) 绕同一转轴转动的两个飞轮,彼此啮合的瞬间;
    请思考,其中角动量守恒的有( ),记住这些模型,会减少很多困扰。

解答: (1)(2)(3)(4)(5)(6)
(1)(2)是的原因是位矢和力的方向平行,俩向量为0
(3)(4)是的原因是作用点在转动中心,位矢为0。(5)(6)是的原因是可以将俩物体看作一个整体系统,合外力为0,因此合外力矩为0

  • 请记下角动量的核心公式,在角动量守恒中会反复使用。圆周运动的质点和定轴转动的刚体,角动量分别为

解答:质点:L=mRv\sin \theta
刚体:L=J\omega

  • 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为I_{0},角速度为\omega_{0}。然后她将两臂收回,使转动惯量减少为\frac{1}{2}I_{0}.设这时她转动的角速度变为\omega,则角动量守恒的方程为

解答:\sum_{i}L_{i}=\sum_{j}L_{j}
I_0\cdot \omega_0=\frac{1}{2} I_0\cdot \omega
\omega=2\omega_0

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来一个质量为m,速度大小为v_{0}的子弹,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,将子弹速度沿切向(等效成圆周运动,从而得到角动量)和法向分解,其切向速度和角动量分别为
    (1) v_{0}, mRv_{0}
    (2) v_{0}\sin\theta, mRv_{0}\sin\theta
    (3) v_{0}\sin\theta, -mRv_{0}\sin\theta
    初态的总角动量为
    (4) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta
    (5) \frac{1}{2}MR^{2}\omega_{0}+mRv_{0}\sin\theta
    末态的总角动量为
    (6) \frac{1}{2}MR^{2}\omega
    (7) \frac{1}{2}MR^{2}\omega+mR^{2}\omega
    核心方程是为
    (8) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    (9) \frac{1}{2}MR^{2}\omega_{0}+mR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    以上正确的是( )

解答:(3)(4)(7)(8)

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来两个质量同为m,速度大小同为v_{0},方向相反,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,总角动量为
    (1) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}
    (2) \frac{1}{2}MR^{2}\omega_{0}
    末态的总角动量为
    (3) \frac{1}{2}MR^{2}\omega
    (4) \frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    核心方程是为
    (5) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    (6) \frac{1}{2}MR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    以上正确的是

解答:(1)(4)(5)

  • 角动量守恒的计算题:有一质量为M、长为l的均匀细棒,平放在光滑的水平桌面上,以角速度\omega_{0}绕通过端点O顺时针转动。另有质量为m,初速为v_{0}的小滑块,与棒的底端A点相撞。碰撞后的瞬间,细棒反转,且角速度为\omega_{1};小滑块反向,速率为v_{1},如图所示。规定顺时针转动方向为正。
    则初态时,总角动量为
    (1) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}
    (2) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}
    末态的总角动量为
    (3) \frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (4) -\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    核心方程是为
    (5) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}=\frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (6) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}=-\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    以上正确的是

解答:(2)(4)(6)

相关文章

  • 13讲by王畅

    守恒定律 知识点 动量守恒、角动量守恒的直观感受 动量守恒的方程 角动量守恒的方程约定好正方向初态时,写出各个物件...

  • 14讲by王畅

    静电场库伦定律 知识点 电场和电势分别描述的什么?(电场描述的是力学性质,电势描述的是功与能量的性质) 电量为Q的...

  • 第9讲。by 王畅

    圆周运动的“角度量”描述 可能用到的符号 、 、对应代码: $\omega$、$\alpha$、$\beta$ 知...

  • 第15讲by王畅

    平面、球、圆柱带电体的场强:高斯定理 知识点 电通量 高斯定理高斯面矢量积分转化为标量积分 平面对称的电场 球对称...

  • 第十讲by 王畅

    知识点 动量的直观感受碰撞模型匀速圆周运动的模型 角动量的直观感受圆周运动速度变化的模型 质点的角动量质点对原点O...

  • 第十二讲by王畅

    转动定律 知识点 类比法理解牛顿第二定律和转动定律 单个刚体的转动 转动、平动组合体:先根据隔离法对各个物件进行简...

  • About 王先生

    我有一个好朋友叫阿毕 她管她的男朋友叫杨先生 但是我从来只叫王畅叫王畅同学 遇到王畅同学之前 我刚刚结束了和一个“...

  • 孩子,请你也多一点耐心多一点宽容!

    中午畅让我13:30叫他,我看他睡着时不早了,就让他多睡了5分钟,叫他时和他说,畅13:35了,起床吧,你...

  • 畅捷云创epos 是什么?

    畅捷云创epos 是什么? 畅捷云创epos 是什么? 感谢支持,我是畅捷云创王琎,交流对接看我名字,畅捷...

  • 【京剧秒懂·第五十七讲】

    致敬王珮瑜老师 《行话》 京剧秒瑜王, 弘扬国粹忙。 今日讲行话, 音韵舞台扬。 2021年10月13日,星期三。...

网友评论

    本文标题:13讲by王畅

    本文链接:https://www.haomeiwen.com/subject/mdmuvqtx.html