美文网首页
16 Pandas怎样实现groupby分组统计

16 Pandas怎样实现groupby分组统计

作者: Viterbi | 来源:发表于2022-11-09 12:12 被阅读0次

16 Pandas怎样实现groupby分组统计

类似SQL:
select city,max(temperature) from city_weather group by city;

groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数

本次演示:
一、分组使用聚合函数做数据统计
二、遍历groupby的结果理解执行流程 三、实例分组探索天气数据

import pandas as pd
import numpy as np
# 加上这一句,能在jupyter notebook展示matplot图表
%matplotlib inline

df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                   'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C': np.random.randn(8),
                   'D': np.random.randn(8)})
df

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
A B C D
0 foo one 0.542903 0.788896
1 bar one -0.375789 -0.345869
2 foo two -0.903407 0.428031
3 bar three -1.564748 0.081163
4 foo two -1.093602 0.837348
5 bar two -0.202403 0.701301
6 foo one -0.665189 -1.505290
7 foo three -0.498339 0.534438

一、分组使用聚合函数做数据统计

1、单个列groupby,查询所有数据列的统计


df.groupby('A').sum()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
C D
A
bar -2.142940 0.436595
foo -2.617633 1.083423

我们看到:

  1. groupby中的’A’变成了数据的索引列
  2. 因为要统计sum,但B列不是数字,所以被自动忽略掉

2、多个列groupby,查询所有数据列的统计


df.groupby(['A','B']).mean()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
C D
A B
bar one -0.375789 -0.345869
three -1.564748 0.081163
two -0.202403 0.701301
foo one -0.061143 -0.358197
three -0.498339 0.534438
two -0.998504 0.632690

我们看到:(‘A’,‘B’)成对变成了二级索引


df.groupby(['A','B'], as_index=False).mean()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
A B C D
0 bar one -0.375789 -0.345869
1 bar three -1.564748 0.081163
2 bar two -0.202403 0.701301
3 foo one -0.061143 -0.358197
4 foo three -0.498339 0.534438
5 foo two -0.998504 0.632690

3、同时查看多种数据统计


df.groupby('A').agg([np.sum, np.mean, np.std])

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead tr th { text-align: left; } .dataframe thead tr:last-of-type th { text-align: right; } </code></pre>
C D
sum mean std sum mean std
A
bar -2.142940 -0.714313 0.741583 0.436595 0.145532 0.526544
foo -2.617633 -0.523527 0.637822 1.083423 0.216685 0.977686

我们看到:列变成了多级索引

4、查看单列的结果数据统计


# 方法1:预过滤,性能更好
df.groupby('A')['C'].agg([np.sum, np.mean, np.std])

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
sum mean std
A
bar -2.142940 -0.714313 0.741583
foo -2.617633 -0.523527 0.637822

# 方法2
df.groupby('A').agg([np.sum, np.mean, np.std])['C']

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
sum mean std
A
bar -2.142940 -0.714313 0.741583
foo -2.617633 -0.523527 0.637822

5、不同列使用不同的聚合函数


df.groupby('A').agg({"C":np.sum, "D":np.mean})

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
C D
A
bar -2.142940 0.145532
foo -2.617633 0.216685

二、遍历groupby的结果理解执行流程

for循环可以直接遍历每个group

1、遍历单个列聚合的分组

g = df.groupby('A')
g

    <pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000123B250E548>



for name,group in g:
    print(name)
    print(group)
    print()

    bar
         A      B         C         D
    1  bar    one -0.375789 -0.345869
    3  bar  three -1.564748  0.081163
    5  bar    two -0.202403  0.701301
    
    foo
         A      B         C         D
    0  foo    one  0.542903  0.788896
    2  foo    two -0.903407  0.428031
    4  foo    two -1.093602  0.837348
    6  foo    one -0.665189 -1.505290
    7  foo  three -0.498339  0.534438
    

可以获取单个分组的数据


g.get_group('bar')

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
A B C D
1 bar one -0.375789 -0.345869
3 bar three -1.564748 0.081163
5 bar two -0.202403 0.701301
2、遍历多个列聚合的分组
g = df.groupby(['A', 'B'])

for name,group in g:
    print(name)
    print(group)
    print()


    ('bar', 'one')
         A    B         C         D
    1  bar  one -0.375789 -0.345869
    
    ('bar', 'three')
         A      B         C         D
    3  bar  three -1.564748  0.081163
    
    ('bar', 'two')
         A    B         C         D
    5  bar  two -0.202403  0.701301
    
    ('foo', 'one')
         A    B         C         D
    0  foo  one  0.542903  0.788896
    6  foo  one -0.665189 -1.505290
    
    ('foo', 'three')
         A      B         C         D
    7  foo  three -0.498339  0.534438
    
    ('foo', 'two')
         A    B         C         D
    2  foo  two -0.903407  0.428031
    4  foo  two -1.093602  0.837348
    

可以看到,name是一个2个元素的tuple,代表不同的列


g.get_group(('foo', 'one'))

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
A B C D
0 foo one 0.542903 0.788896
6 foo one -0.665189 -1.505290

可以直接查询group后的某几列,生成Series或者子DataFrame

g['C']


    <pandas.core.groupby.generic.SeriesGroupBy object at 0x00000123C33F64C8>


for name, group in g['C']:
    print(name)
    print(group)
    print(type(group))
    print()


    ('bar', 'one')
    1   -0.375789
    Name: C, dtype: float64
    <class 'pandas.core.series.Series'>
    
    ('bar', 'three')
    3   -1.564748
    Name: C, dtype: float64
    <class 'pandas.core.series.Series'>
    
    ('bar', 'two')
    5   -0.202403
    Name: C, dtype: float64
    <class 'pandas.core.series.Series'>
    
    ('foo', 'one')
    0    0.542903
    6   -0.665189
    Name: C, dtype: float64
    <class 'pandas.core.series.Series'>
    
    ('foo', 'three')
    7   -0.498339
    Name: C, dtype: float64
    <class 'pandas.core.series.Series'>
    
    ('foo', 'two')
    2   -0.903407
    4   -1.093602
    Name: C, dtype: float64
    <class 'pandas.core.series.Series'>
    

其实所有的聚合统计,都是在dataframe和series上进行的;

三、实例分组探索天气数据


fpath = "./datas/beijing_tianqi/beijing_tianqi_2018.csv"
df = pd.read_csv(fpath)
# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype('int32')
df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype('int32')
df.head()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 2
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 1
2 2018-01-03 2 -5 多云 北风 1-2级 28 1
3 2018-01-04 0 -8 东北风 1-2级 28 1
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 1

# 新增一列为月份
df['month'] = df['ymd'].str[:7]
df.head()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel month
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 2 2018-01
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 1 2018-01
2 2018-01-03 2 -5 多云 北风 1-2级 28 1 2018-01
3 2018-01-04 0 -8 东北风 1-2级 28 1 2018-01
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 1 2018-01

1、查看每个月的最高温度

data = df.groupby('month')['bWendu'].max()
data




    month
    2018-01     7
    2018-02    12
    2018-03    27
    2018-04    30
    2018-05    35
    2018-06    38
    2018-07    37
    2018-08    36
    2018-09    31
    2018-10    25
    2018-11    18
    2018-12    10
    Name: bWendu, dtype: int32




type(data)




    pandas.core.series.Series




data.plot()

2、查看每个月的最高温度、最低温度、平均空气质量指数


df.head()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel month
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 2 2018-01
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 1 2018-01
2 2018-01-03 2 -5 多云 北风 1-2级 28 1 2018-01
3 2018-01-04 0 -8 东北风 1-2级 28 1 2018-01
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 1 2018-01

group_data = df.groupby('month').agg({"bWendu":np.max, "yWendu":np.min, "aqi":np.mean})

group_data

.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
bWendu yWendu aqi
month
2018-01 7 -12 60.677419
2018-02 12 -10 78.857143
2018-03 27 -4 130.322581
2018-04 30 1 102.866667
2018-05 35 10 99.064516
2018-06 38 17 82.300000
2018-07 37 22 72.677419
2018-08 36 20 59.516129
2018-09 31 11 50.433333
2018-10 25 1 67.096774
2018-11 18 -4 105.100000
2018-12 10 -12 77.354839
group_data.plot()


    <matplotlib.axes._subplots.AxesSubplot at 0x123c5502d48>

本文使用 文章同步助手 同步

相关文章

网友评论

      本文标题:16 Pandas怎样实现groupby分组统计

      本文链接:https://www.haomeiwen.com/subject/msfftdtx.html