1.自动微分(autograd)指南
2.Autograd:自动微分机制
PyTorch 中所有神经网络的核心是 autograd 包。
我们先简单介绍一下这个包,然后训练第一个简单的神经网络。
autograd包为张量上的所有操作提供了自动求导。
它是一个在运行时定义的框架,这意味着反向传播是根据你的代码来确定如何运行,并且每次迭代可以是不同的。
1
2.1张量(Tensor)
torch.Tensor是这个包的核心类。如果设置
.requires_grad 为 True,那么将会追踪所有对于该张量的操作。
当完成计算后通过调用 .backward(),自动计算所有的梯度,
这个张量的所有梯度将会自动积累到 .grad 属性。
要阻止张量跟踪历史记录,可以调用.detach()方法将其与计算历史记录分离,并禁止跟踪它将来的计算记录。
为了防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():中。
在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练参数,但是我们不需要梯度计算。
在自动梯度计算中还有另外一个重要的类Function.
Tensor and Function are interconnected and build up an acyclic
graph, that encodes a complete history of computation. Each tensor has
a .grad_fn attribute that references a Function that has created
the Tensor (except for Tensors created by the user - their
grad_fn is None).
Tensor 和 Function互相连接并生成一个非循环图,它表示和存储了完整的计算历史。
每个张量都有一个.grad_fn属性,这个属性引用了一个创建了Tensor的Function(除非这个张量是用户手动创建的,即,这个张量的
grad_fn 是 None)。
如果需要计算导数,你可以在Tensor上调用.backward()。
如果Tensor是一个标量(即它包含一个元素数据)则不需要为backward()指定任何参数,
但是如果它有更多的元素,你需要指定一个gradient 参数来匹配张量的形状。
在其他的文章中你可能会看到说将Tensor包裹到Variable中提供自动梯度计算,Variable 这个在0.41版中已经被标注为过期了,现在可以直接使用Tensor,官方文档在这里:
(https://pytorch.org/docs/stable/autograd.html#variable-deprecated)
具体的后面会有详细说明
import torch
创建一个张量并设置 requires_grad = True 用来追踪他的计算历史
x = torch.ones(2,2,requires_grad = True)
print(x)
2
对张量进行操作
y = x+2
print(y)
3
结果y已经被计算出来了,所以,grad_fn已经被自动生成了。
print(y.grad_fn)
4
对y进行一个操作
z = y*y*3
out = z.mean()
print(z , out)
5
.requires_grad_( ... ) 可以改变现有张量的 requires_grad属性。
如果没有指定的话,默认输入的flag是 False。
a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
6
2.2梯度
反向传播
因为 out是一个纯量(scalar),out.backward() 等于out.backward(torch.tensor(1))。
out.backward()
print gradients d(out)/dx
print(x.grad)
7
得到矩阵
4.5.调用 outTensor “
得到 ,
and
.
因此,
, hence
.
可以使用 autograd 做更多的操作
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
8
gradients = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(gradients)
print(x.grad)
9
如果.requires_grad=True但是你又不希望进行autograd的计算,
那么可以将变量包裹在 with torch.no_grad()中:
print(x.requires_grad)
print((x ** 2).requires_grad)
with torch.no_grad():
print((x ** 2).requires_grad)
10
autograd 和 Function 的官方文档 https://pytorch.org/docs/autograd










网友评论