美文网首页
[Keras] Keras问题汇总Q&A

[Keras] Keras问题汇总Q&A

作者: DexterLei | 来源:发表于2017-12-03 17:32 被阅读485次

List:

  • 运行Python脚本时显示Badfile:File is not a zip file?
  • 如何查看Keras自动定义类别的编号? / 使用训练好的模型预测时,预测概率序列和Labels的对应关系?
  • Keras能否使用不同尺寸的图像作为输入(不缩放)?
  • 如何提取模型中某一层的输入并可视化?
  • Keras如何调用多GPU,以及多GPU下如何保存模型?



Q:运行Python脚本时显示Badfile:File is not a zip file?


Q:如何查看Keras自动定义类别的编号? / 使用训练好的模型预测时,预测概率序列和Labels的对应关系?

print(validation_generator.class_indices)

使用生成器的.class_indices方法即可获取模型默认的Labels序列。
参考:
Keras flow_from_directory class index
Keras 训练时不用将数据全部加入内存


Q:如何解决数据不均衡问题?
fit函数中调用class_weight,可以通过字典设置每个类别输入权重,比如:cw = {0: 1, 1: 25},类别序列可以使用.class_indices获取。


Q:Keras能否使用不同尺寸的图像作为输入(不缩放)?
可行,但不推荐:


Q:如何提取模型中某一层的输入并可视化?
参见:[DeepLearning]keras初体验之病斑分类


Q:Keras如何调用多GPU,以及多GPU下如何保存模型?
multi_gpu_model

keras.utils.multi_gpu_model(model, gpus)

将模型在多个GPU上复制

特别地,该函数用于单机多卡的数据并行支持,它按照下面的方式工作:
(1)将模型的输入分为多个子batch
(2)在每个设备上调用各自的模型,对各自的数据集运行
(3)将结果连接为一个大的batch(在CPU上)
例如,你的batch_size是64而gpus=2,则输入会被分为两个大小为32的子batch,在两个GPU上分别运行,通过连接后返回大小为64的结果。 该函数线性的增加了训练速度,最高支持8卡并行。

*该函数只能在tf后端下使用

参数如下:

  • model: Keras模型对象,为了避免OOM错误(内存不足),该模型应在CPU上构建,参考下面的例子。
  • gpus: 大或等于2的整数,要并行的GPU数目。
    该函数返回Keras模型对象,它看起来跟普通的keras模型一样,但实际上分布在多个GPU上。

例子:

import tensorflow as tf
from keras.applications import Xception
from keras.utils import multi_gpu_model
import numpy as np

num_samples = 1000
height = 224
width = 224
num_classes = 1000

# Instantiate the base model
# (here, we do it on CPU, which is optional).
with tf.device('/cpu:0'):
    model = Xception(weights=None,
                     input_shape=(height, width, 3),
                     classes=num_classes)

# Replicates the model on 8 GPUs.
# This assumes that your machine has 8 available GPUs.
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss='categorical_crossentropy',
                       optimizer='rmsprop')

# Generate dummy data.
x = np.random.random((num_samples, height, width, 3))
y = np.random.random((num_samples, num_classes))

# This `fit` call will be distributed on 8 GPUs.
# Since the batch size is 256, each GPU will process 32 samples.
parallel_model.fit(x, y, epochs=20, batch_size=256)

但是在parallel_model.fit()结束后,使用代码parallel_model.save()保存却出现错误:

parallel_model.save('test.h5')
Traceback (most recent call last):

  File "<ipython-input-13-8d4461a4551e>", line 1, in <module>
    parallel_model.save('test.h5')

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.py", line 2556, in save
    save_model(self, filepath, overwrite, include_optimizer)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/models.py", line 107, in save_model
    'config': model.get_config()

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.py", line 2397, in get_config
    return copy.deepcopy(config)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 230, in _deepcopy_list
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 264, in _deepcopy_method
    return type(x)(x.im_func, deepcopy(x.im_self, memo), x.im_class)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 230, in _deepcopy_list
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 298, in _deepcopy_inst
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 182, in deepcopy
    rv = reductor(2)

TypeError: can't pickle thread.lock objects

这个问题困扰了我很久,最后在 keras-team/keras/issues#8446&issues#8253找到正解。
不过当时提问者报错为:

TypeError: can’t pickle module objects

与我的TypeError: can't pickle thread.lock objects大同小异,解决方法如下:


意思就是直接使用传入方法keras.utils.multi_gpu_model(model, gpus)中的model即可,而不要使用返回的parallel_model,即:
model.save('xxx.h5')

相关文章

网友评论

      本文标题:[Keras] Keras问题汇总Q&A

      本文链接:https://www.haomeiwen.com/subject/ompouxtx.html