美文网首页
24.iOS底层学习之GCD 源码分析(上)

24.iOS底层学习之GCD 源码分析(上)

作者: 牛牛大王奥利给 | 来源:发表于2022-01-10 16:11 被阅读0次

本篇提纲:
1、上一篇内容补充
2、创建队列dispatch_queue_create的源码分析
3、GCD的底层继承链
4、同步函数dispatch_sync源码分析
5、异步函数dispatch_async源码分析
6、单例dispatch_once_t源码分析

一、内容补充

上一篇文章我们简单的看了一下主队列dispatch_get_main_queue的一部分源码,我自己也留下了一些疑问,这篇文章首先来进行一下简单的补充主要是两个问题:
1、底层源码的哪个用来字段区分是串行队列和并行队列?
2、dq_serialnum是用来做什么的?

我们顺着这两个问题来继续更加深入的去看看源码。

dispatch_get_main_quque源码:

dispatch_queue_main_t
dispatch_get_main_queue(void)
{
    return DISPATCH_GLOBAL_OBJECT(dispatch_queue_main_t, _dispatch_main_q);
}
dispatch_queue_main_t

根据源码我们可以了解到,最后返回的类型是dispatch_queue_main_t,而dispatch_queue_main_t的定义是dispatch_queue_static_s类型,我们这样一层一层的去查找源码可以最终找到_OS_OBJECT_HEADER,这个路径是:
dispatch_queue_main_t->dispatch_queue_static_s->dispatch_lane_s->DISPATCH_LANE_CLASS_HEADER->_DISPATCH_QUEUE_CLASS_HEADER->DISPATCH_OBJECT_HEADER->OS_OBJECT_STRUCT_HEADER->_OS_OBJECT_HEADER

_OS_OBJECT_HEADER是一个宏定义如下:

#define _OS_OBJECT_HEADER(isa, ref_cnt, xref_cnt) \
        isa; /* must be pointer-sized and use __ptrauth_objc_isa_pointer */ \
        int volatile ref_cnt; \
        int volatile xref_cnt

绕了这么大一圈儿发现dispatch_queue_main_t最下层是一个isa的层层封装,😂😂😂前边还包括了dq_serialnum 还有dq_label等信息

DISPATCH_GLOBAL_OBJECT
#define DISPATCH_GLOBAL_OBJECT(type, object) ((OS_OBJECT_BRIDGE type)&(object))

返回类型我们了解过了,再来看实现的方法DISPATCH_GLOBAL_OBJECT,发现又是一个宏定义。
第一个参数是type对应:dispatch_queue_main_t
第二个参数是object对应:_dispatch_main_q
所以这里DISPATCH_GLOBAL_OBJECT的运算是第一个参数和第二个参数做安位与运算返回结果,应该是一个自己的类型和一个对象做运算取值的过程。

_dispatch_main_q
struct dispatch_queue_static_s _dispatch_main_q = {
    DISPATCH_GLOBAL_OBJECT_HEADER(queue_main), //前面分析过了,实际上是isa
#if !DISPATCH_USE_RESOLVERS //不是
    .do_targetq = _dispatch_get_default_queue(true),
#endif
    .dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(1) |
            DISPATCH_QUEUE_ROLE_BASE_ANON,
    .dq_label = "com.apple.main-thread",
    .dq_atomic_flags = DQF_THREAD_BOUND | DQF_WIDTH(1),
    .dq_serialnum = 1,
};

我们来一行一行的分析代码:
1、#if !DISPATCH_USE_RESOLVERS

#if DISPATCH_USE_RESOLVERS // rdar://problem/8541707
    _dispatch_main_q.do_targetq = _dispatch_get_default_queue(true);

#define _dispatch_get_default_queue(overcommit) \
        _dispatch_root_queues[DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS + \
                !!(overcommit)]._as_dq

_dispatch_root_queues定义:

struct dispatch_queue_global_s _dispatch_root_queues[] = {
#define _DISPATCH_ROOT_QUEUE_IDX(n, flags) \
        ((flags & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) ? \
        DISPATCH_ROOT_QUEUE_IDX_##n##_QOS_OVERCOMMIT : \
        DISPATCH_ROOT_QUEUE_IDX_##n##_QOS)
#define _DISPATCH_ROOT_QUEUE_ENTRY(n, flags, ...) \
    [_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
        DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
        .dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
        .do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
        .dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
        .dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
                _dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
                _dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
        __VA_ARGS__ \
    }
    _DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, 0,
        .dq_label = "com.apple.root.maintenance-qos",
        .dq_serialnum = 4,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.maintenance-qos.overcommit",
        .dq_serialnum = 5,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, 0,
        .dq_label = "com.apple.root.background-qos",
        .dq_serialnum = 6,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.background-qos.overcommit",
        .dq_serialnum = 7,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, 0,
        .dq_label = "com.apple.root.utility-qos",
        .dq_serialnum = 8,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.utility-qos.overcommit",
        .dq_serialnum = 9,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT, DISPATCH_PRIORITY_FLAG_FALLBACK,
        .dq_label = "com.apple.root.default-qos",
        .dq_serialnum = 10,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT,
            DISPATCH_PRIORITY_FLAG_FALLBACK | DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.default-qos.overcommit",
        .dq_serialnum = 11,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, 0,
        .dq_label = "com.apple.root.user-initiated-qos",
        .dq_serialnum = 12,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.user-initiated-qos.overcommit",
        .dq_serialnum = 13,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, 0,
        .dq_label = "com.apple.root.user-interactive-qos",
        .dq_serialnum = 14,
    ),
    _DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.user-interactive-qos.overcommit",
        .dq_serialnum = 15,
    ),
};

DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS是一个枚举值:

DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS 枚举.png

我们看完以上这些信息还得回溯到前面DISPATCH_USE_RESOLVERS的定义可以了解传进来的值是ture,所以:
_dispatch_root_queues[DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS + \ !!(overcommit)]._as_dq里面的
DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS+!!(overcommit) 就等于 6+!!(ture)= 6+!!(1) =7;

所以:_dispatch_root_queues取得就是第七个index对应的值也就是_dispatch_root_queues[7] 是:

_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT,
            DISPATCH_PRIORITY_FLAG_FALLBACK | DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.default-qos.overcommit",
        .dq_serialnum = 11,
    ),

是一个com.apple.root.default-qos.overcommit类型的。而_DISPATCH_ROOT_QUEUE_ENTRY_dispatch_root_queues的前边就有宏定义,里面包括很多信息:

    [_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
        DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
        .dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
        .do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
        .dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
        .dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
                _dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
                _dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
        __VA_ARGS__ \
    }

由此部分定义可以看到:
dq_atomic_flags对应的是DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL),也就是这个队列的原子属性和非原子属性的flag是DQF_WIDTH
_dispatch_root_queues[DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS + \ !!(overcommit)]._as_dq后面的_as_dqDISPATCH_LANE_CLASS_HEADER宏定义里面的值

#define DISPATCH_LANE_CLASS_HEADER(x) \
    struct dispatch_queue_s _as_dq[0]; \
    DISPATCH_QUEUE_CLASS_HEADER(x, \
            struct dispatch_object_s *volatile dq_items_tail); \
    dispatch_unfair_lock_s dq_sidelock; \
    struct dispatch_object_s *volatile dq_items_head; \
    uint32_t dq_side_suspend_cnt

所以我们回到第一句代码的预处理判断#if !DISPATCH_USE_RESOLVERS这个的意思就是:不是这种类型的队列的情况下才执行:

    .do_targetq = _dispatch_get_default_queue(true),

.do_targetq 才有值。

2、.dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(1) | DISPATCH_QUEUE_ROLE_BASE_ANON,
然后到这句。DISPATCH_QUEUE_STATE_INIT_VALUE定义如下:

#define DISPATCH_QUEUE_STATE_INIT_VALUE(width) \
        ((DISPATCH_QUEUE_WIDTH_FULL - (width)) << DISPATCH_QUEUE_WIDTH_SHIFT)

#define DISPATCH_QUEUE_WIDTH_FULL           0x1000ull

#define DISPATCH_QUEUE_ROLE_BASE_ANON       0x0000001000000000ull

#define DISPATCH_QUEUE_WIDTH_SHIFT          41

又是宏。查到上面的源代码吧对应的值进行替换可以把这句代码写成:
.dq_state = ((0x1000ull - (1)) << 41) | 0x0000001000000000ull,
因为这样,还是看不太出来这个.dq_state是做什么的,然后我去搜索.dq_state相关的宏定义赋值,从赋值上看看能不能找到相关的注释,结果被我找到了一处大致的说明:

dq_state
根据这个注释大致可以看出来,这个dq_state的值表示全局队列的,有两个值一个是QUEUE_FULL,还一个是INBARRIER,在dispatch_barrier_sync() 和dispatch_sync()中会设置,来进行阻塞。

dq_label:这个是队列的标签,显而易见,也就是那个队列名称。
dq_atomic_flags:在检索这一项的时候,直接查找是找不到相关的信息的,所以我还是从值的地方开始入手去看。查到了相关DQF_THREAD_BOUND,于是就找到了这个

DISPATCH_OPTIONS(dispatch_queue_flags, uint32_t,
    DQF_NONE                = 0x00000000,
    DQF_AUTORELEASE_ALWAYS  = 0x00010000,
    DQF_AUTORELEASE_NEVER   = 0x00020000,
#define _DQF_AUTORELEASE_MASK 0x00030000
    DQF_THREAD_BOUND        = 0x00040000, // queue is bound to a thread
    DQF_BARRIER_BIT         = 0x00080000, // queue is a barrier on its target
    DQF_TARGETED            = 0x00100000, // queue is targeted by another object
    DQF_LABEL_NEEDS_FREE    = 0x00200000, // queue label was strdup()ed
    DQF_MUTABLE             = 0x00400000,
    DQF_RELEASED            = 0x00800000, // xref_cnt == -1

    //
    // Only applies to sources
    //
    // @const DSF_STRICT
    // Semantics of the source are strict (implies DQF_MUTABLE being unset):
    // - handlers can't be changed past activation
    // - EV_VANISHED causes a hard failure
    // - source can't change WLH
    //
    // @const DSF_WLH_CHANGED
    // The wlh for the source changed (due to retarget past activation).
    // Only used for debugging and diagnostics purposes.
    //
    // @const DSF_CANCELED
    // Explicit cancelation has been requested.
    //
    // @const DSF_CANCEL_WAITER
    // At least one caller of dispatch_source_cancel_and_wait() is waiting on
    // the cancelation to finish. DSF_CANCELED must be set if this bit is set.
    //
    // @const DSF_NEEDS_EVENT
    // The source has started to delete its unotes due to cancelation, but
    // couldn't finish its unregistration and is waiting for some asynchronous
    // events to fire to be able to.
    //
    // This flag prevents spurious wakeups when the source state machine
    // requires specific events to make progress. Events that are likely
    // to unblock a source state machine pass DISPATCH_WAKEUP_EVENT
    // which neuters the effect of DSF_NEEDS_EVENT.
    //
    // @const DSF_DELETED
    // The source can now only be used as a queue and is not allowed to register
    // any new unote anymore. All the previously registered unotes are inactive
    // and their knote is gone. However, these previously registered unotes may
    // still be in the process of delivering their last event.
    //
    // Sources have an internal refcount taken always while they use eventing
    // subsystems which is consumed when this bit is set.
    //
    DSF_STRICT              = 0x04000000,
    DSF_WLH_CHANGED         = 0x08000000,
    DSF_CANCELED            = 0x10000000,
    DSF_CANCEL_WAITER       = 0x20000000,
    DSF_NEEDS_EVENT         = 0x40000000,
    DSF_DELETED             = 0x80000000,

#define DQF_FLAGS_MASK        ((dispatch_queue_flags_t)0xffff0000)
#define DQF_WIDTH_MASK        ((dispatch_queue_flags_t)0x0000ffff)
#define DQF_WIDTH(n)          ((dispatch_queue_flags_t)(uint16_t)(n))
);

所以这个值为:dq_atomic_flags = DQF_THREAD_BOUND | DQF_WIDTH(1) = DQF_THREAD_BOUND,根据这个注释可以看到,这里是描述队列是不是存在阻塞啊什么的类型的。

dq_serialnum:同样我们使用找值的方法继续探索这个的定义。如下

dq_serialnum
这个注释中解释,没有0,1表示主队列,4到15是全局队列,16是自定义队列。
所以这个值是用来描述队列名称的类型的,来区分主队列,全局,和自定义等等队列的。
二、创建队列dispatch_queue_create的源码分析

dispatch_queue_create源码:

dispatch_queue_t
dispatch_queue_create(const char *label, dispatch_queue_attr_t attr)
{
    return _dispatch_lane_create_with_target(label, attr,
            DISPATCH_TARGET_QUEUE_DEFAULT, true);
}

根据这个源码可以看到来到了方法_dispatch_lane_create_with_target,然后这个方法的内容挺多的。这个方法源码中有一部分注释:

static dispatch_queue_t
_dispatch_lane_create_with_target(const char *label, dispatch_queue_attr_t dqa,
        dispatch_queue_t tq, bool legacy)
{
    dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);

    //
    // Step 1: Normalize arguments (qos, overcommit, tq)
    //

    dispatch_qos_t qos = dqai.dqai_qos;
//此处省略好多行代码。。。。。。。。。。。。。。。。。。。。。。。。。。
    //
    // Step 2: Initialize the queue
    //

    if (legacy) {
        // if any of these attributes is specified, use non legacy classes
        if (dqai.dqai_inactive || dqai.dqai_autorelease_frequency) {
            legacy = false;
        }
    }

    const void *vtable;
    dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
    if (dqai.dqai_concurrent) {
        vtable = DISPATCH_VTABLE(queue_concurrent);
    } else {
        vtable = DISPATCH_VTABLE(queue_serial);
    }
    switch (dqai.dqai_autorelease_frequency) {
    case DISPATCH_AUTORELEASE_FREQUENCY_NEVER:
        dqf |= DQF_AUTORELEASE_NEVER;
        break;
    case DISPATCH_AUTORELEASE_FREQUENCY_WORK_ITEM:
        dqf |= DQF_AUTORELEASE_ALWAYS;
        break;
    }
    if (label) {
        const char *tmp = _dispatch_strdup_if_mutable(label);
        if (tmp != label) {
            dqf |= DQF_LABEL_NEEDS_FREE;
            label = tmp;
        }
    }

    dispatch_lane_t dq = _dispatch_object_alloc(vtable,
            sizeof(struct dispatch_lane_s));
    _dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
            DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
            (dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));

    dq->dq_label = label;
    dq->dq_priority = _dispatch_priority_make((dispatch_qos_t)dqai.dqai_qos,
            dqai.dqai_relpri);
    if (overcommit == _dispatch_queue_attr_overcommit_enabled) {
        dq->dq_priority |= DISPATCH_PRIORITY_FLAG_OVERCOMMIT;
    }
    if (!dqai.dqai_inactive) {
        _dispatch_queue_priority_inherit_from_target(dq, tq);
        _dispatch_lane_inherit_wlh_from_target(dq, tq);
    }
    _dispatch_retain(tq);
    dq->do_targetq = tq;
    _dispatch_object_debug(dq, "%s", __func__);
    return _dispatch_trace_queue_create(dq)._dq;
}

step1:Normalize arguments (qos, overcommit, tq),规范参数。
step2:Initialize the queue,第二步才是真正初始化队列的部分。
根据源码可以看到创建队列的关键方法是:
dispatch_lane_t dq = _dispatch_object_alloc(vtable, sizeof(struct dispatch_lane_s));
进入到_dispatch_object_alloc

void *
_dispatch_object_alloc(const void *vtable, size_t size)
{
#if OS_OBJECT_HAVE_OBJC1
    const struct dispatch_object_vtable_s *_vtable = vtable;
    dispatch_object_t dou;
    dou._os_obj = _os_object_alloc_realized(_vtable->_os_obj_objc_isa, size);
    dou._do->do_vtable = vtable;
    return dou._do;
#else
    return _os_object_alloc_realized(vtable, size);
#endif
}

这个方法是开辟空间,再深入进去看来到_os_object_alloc_realized,这个把cls和obj->os_obj_isa进行绑定,并且开辟相应的size空间。

而接下来的_dispatch_queue_init的实现如下:

static inline dispatch_queue_class_t
_dispatch_queue_init(dispatch_queue_class_t dqu, dispatch_queue_flags_t dqf,
        uint16_t width, uint64_t initial_state_bits)
{
    uint64_t dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(width);
    dispatch_queue_t dq = dqu._dq;

    dispatch_assert((initial_state_bits & ~(DISPATCH_QUEUE_ROLE_MASK |
            DISPATCH_QUEUE_INACTIVE)) == 0);

    if (initial_state_bits & DISPATCH_QUEUE_INACTIVE) {
        dq->do_ref_cnt += 2; // rdar://8181908 see _dispatch_lane_resume
        if (dx_metatype(dq) == _DISPATCH_SOURCE_TYPE) {
            dq->do_ref_cnt++; // released when DSF_DELETED is set
        }
    }

    dq_state |= initial_state_bits;
    dq->do_next = DISPATCH_OBJECT_LISTLESS;
    dqf |= DQF_WIDTH(width);
    os_atomic_store2o(dq, dq_atomic_flags, dqf, relaxed);
    dq->dq_state = dq_state;
    dq->dq_serialnum =
            os_atomic_inc_orig(&_dispatch_queue_serial_numbers, relaxed);
    return dqu;
}

这方法有四个参数,第三个是width,我们再去前边看这个方法的调用,看看传进来的是什么:
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER | (dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));
第三个参数是dqai.dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1,而dqai.dqai_concurrent我们再看方法_dispatch_lane_create_with_target发现里面有一段是:

const void *vtable;
    dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
    if (dqai.dqai_concurrent) {
        vtable = DISPATCH_VTABLE(queue_concurrent);
    } else {
        vtable = DISPATCH_VTABLE(queue_serial);
    }

这很明显这个值dqai_concurrent代表并发还是串行队列,所以这个dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1,并发的时候为DISPATCH_QUEUE_WIDTH_MAX,串行的时候为1,也就是对应上了DQF_WIDTH(width)=DQF_WIDTH(1),所以这个值表示的是串行或者并行。
而且,进一步看DISPATCH_QUEUE_WIDTH_MAX=0x1000ull-2=0xFFe,而如果是串行队列,width就是1,这个width可能描述的是并发的个数,这样也说得通串行的时候并发数是1,并行的时候不限制。

再接着往下看,可以看到dq_label,优先级等一些赋值,然后最后释放了tq,tq是什么呢,往上查阅代码可以看到tq的获取在这里:

    if (!tq) {
        tq = _dispatch_get_root_queue(
                qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
                overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
        if (unlikely(!tq)) {
            DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
        }
    }

所以又回到了最开始的_dispatch_get_root_queue,从root队列里面取(里面标号1~17的那个)。
dispatch_queue_create的大致流程是,通过方法_dispatch_lane_create_with_target先进行参数的规范处理,然后通过tq的判断去root_quque中拿到相应队列的信息attributes等,进行开辟空间,生成_os_object_t对象,然后进行dq_label,并行串行,优先级等一些信息的初始化,最终把拿到的队列类型相应的attributes付给创建好的队列。

三、GCD的底层继承链

上面我们创建队列的时候,返回的是dispatch_queue_t,我们通过源码具体来看看它的定义:

typedef struct dispatch_queue_s *dispatch_queue_t;

struct dispatch_queue_s {
    DISPATCH_QUEUE_CLASS_HEADER(queue, void *__dq_opaque1);
    /* 32bit hole on LP64 */
} DISPATCH_ATOMIC64_ALIGN;

#define _DISPATCH_QUEUE_CLASS_HEADER(x, __pointer_sized_field__) \
    DISPATCH_OBJECT_HEADER(x); \
    DISPATCH_UNION_LE(uint64_t volatile dq_state, \
            dispatch_lock dq_state_lock, \
            uint32_t dq_state_bits \
    ); \

#define _DISPATCH_OBJECT_HEADER(x) \
    struct _os_object_s _as_os_obj[0]; \
    OS_OBJECT_STRUCT_HEADER(dispatch_##x); \
    struct dispatch_##x##_s *volatile do_next; \
    struct dispatch_queue_s *do_targetq; \
    void *do_ctxt; \
    union { \
        dispatch_function_t DISPATCH_FUNCTION_POINTER do_finalizer; \
        void *do_introspection_ctxt; \
    }

dispatch_queue_t是类型dispatch_queue_s->DISPATCH_QUEUE_CLASS_HEADER->DISPATCH_OBJECT_HEADER等等,这个我们在第一个部分研究过,最后是一个isa,所以队列queue_t的本质也是个isaisa的上层封装的是对象_OS_OBJECT_HEADER,也就是定义的_os_object_s,而_os_object_stypedef struct _os_object_s *_os_object_t;
所以这个过程和我们前面学过的对象的继承链class->objc_class->objc_object,
dispatch_queue_t-> dispatch_queue_s-> _os_object_s类似。

四、同步函数dispatch_sync源码分析

dispatch_sync

void
dispatch_sync(dispatch_queue_t dq, dispatch_block_t work)
{
    uintptr_t dc_flags = DC_FLAG_BLOCK;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
    }
    _dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}
  • 传入的work参数就是任务的block,一直追寻work参数就能找到调用的代码
    这里有一个判断,分别根据unlikely的最终值,调用不同的代码,分别是_dispatch_sync_block_with_privdata_dispatch_sync_f。我们先来看_dispatch_sync_f

  • _dispatch_sync_f

static void
_dispatch_sync_f(dispatch_queue_t dq, void *ctxt, dispatch_function_t func,
        uintptr_t dc_flags)
{
    _dispatch_sync_f_inline(dq, ctxt, func, dc_flags);
}

static inline void
_dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
    if (likely(dq->dq_width == 1)) {
        return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);
    }

    if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
        DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
    }

    dispatch_lane_t dl = upcast(dq)._dl;
    // Global concurrent queues and queues bound to non-dispatch threads
    // always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
    if (unlikely(!_dispatch_queue_try_reserve_sync_width(dl))) {
        return _dispatch_sync_f_slow(dl, ctxt, func, 0, dl, dc_flags);
    }

    if (unlikely(dq->do_targetq->do_targetq)) {
        return _dispatch_sync_recurse(dl, ctxt, func, dc_flags);
    }
    _dispatch_introspection_sync_begin(dl);
    _dispatch_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(
            _dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags)));
}

可以看到_dispatch_sync_f_inline中的判断还挺多的,具体走了哪个分支我们通过符号断点来确定:

符号断点
进来来到了_dispatch_sync_f_slow
DISPATCH_NOINLINE
static void
_dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt,
        dispatch_function_t func, uintptr_t top_dc_flags,
        dispatch_queue_class_t dqu, uintptr_t dc_flags)
{
    dispatch_queue_t top_dq = top_dqu._dq;
    dispatch_queue_t dq = dqu._dq;
    if (unlikely(!dq->do_targetq)) {
        return _dispatch_sync_function_invoke(dq, ctxt, func);
    }

    pthread_priority_t pp = _dispatch_get_priority();
    struct dispatch_sync_context_s dsc = {
        .dc_flags    = DC_FLAG_SYNC_WAITER | dc_flags,
        .dc_func     = _dispatch_async_and_wait_invoke,
        .dc_ctxt     = &dsc,
        .dc_other    = top_dq,
        .dc_priority = pp | _PTHREAD_PRIORITY_ENFORCE_FLAG,
        .dc_voucher  = _voucher_get(),
        .dsc_func    = func,
        .dsc_ctxt    = ctxt,
        .dsc_waiter  = _dispatch_tid_self(),
    };

    _dispatch_trace_item_push(top_dq, &dsc);
    __DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);

    if (dsc.dsc_func == NULL) {
        // dsc_func being cleared means that the block ran on another thread ie.
        // case (2) as listed in _dispatch_async_and_wait_f_slow.
        dispatch_queue_t stop_dq = dsc.dc_other;
        return _dispatch_sync_complete_recurse(top_dq, stop_dq, top_dc_flags);
    }

    _dispatch_introspection_sync_begin(top_dq);
    _dispatch_trace_item_pop(top_dq, &dsc);
    _dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags
            DISPATCH_TRACE_ARG(&dsc));
}

我们再下符号断点来看走的是哪个部分,来到的是_dispatch_sync_function_invoke我们接着跟进来:

static void
_dispatch_sync_function_invoke(dispatch_queue_class_t dq, void *ctxt,
        dispatch_function_t func)
{
    _dispatch_sync_function_invoke_inline(dq, ctxt, func);
}

static inline void
_dispatch_sync_function_invoke_inline(dispatch_queue_class_t dq, void *ctxt,
        dispatch_function_t func)
{
    dispatch_thread_frame_s dtf;
    _dispatch_thread_frame_push(&dtf, dq);
    _dispatch_client_callout(ctxt, func);
    _dispatch_perfmon_workitem_inc();
    _dispatch_thread_frame_pop(&dtf);
}

这里我分别试了下同步串行队列,还有并发队列,串行队列走的是_dispatch_sync_f_slow,并发队列走的是_dispatch_sync_invoke_and_complete_dispatch_sync_invoke_and_complete,而他们最终都会来到方法_dispatch_sync_function_invoke_inline

  • _dispatch_thread_frame_push 任务入队
  • _dispatch_client_callout任务执行
  • _dispatch_thread_frame_pop任务出队
    _dispatch_client_callout
void
_dispatch_client_callout(void *ctxt, dispatch_function_t f)
{
    _dispatch_get_tsd_base();
    void *u = _dispatch_get_unwind_tsd();
    if (likely(!u)) return f(ctxt);
    _dispatch_set_unwind_tsd(NULL);
    f(ctxt);
    _dispatch_free_unwind_tsd();
    _dispatch_set_unwind_tsd(u);
}

这个执行函数f,就是外界传回来的block回调。

  • 死锁
    当出现死锁的时候,我们的编译器定位到_dispatch_sync_f_slow,然后调用到__DISPATCH_WAIT_FOR_QUEUE__
    _dispatch_sync_f_slow

DISPATCH_WAIT_FOR_QUEUE

static void
__DISPATCH_WAIT_FOR_QUEUE__(dispatch_sync_context_t dsc, dispatch_queue_t dq)
{
    uint64_t dq_state = _dispatch_wait_prepare(dq);
    if (unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))) {
        DISPATCH_CLIENT_CRASH((uintptr_t)dq_state,
                "dispatch_sync called on queue "
                "already owned by current thread");
    }

    // Blocks submitted to the main thread MUST run on the main thread, and
    // dispatch_async_and_wait also executes on the remote context rather than
    // the current thread.
    //
    // For both these cases we need to save the frame linkage for the sake of
    // _dispatch_async_and_wait_invoke
    _dispatch_thread_frame_save_state(&dsc->dsc_dtf);

    if (_dq_state_is_suspended(dq_state) ||
            _dq_state_is_base_anon(dq_state)) {
        dsc->dc_data = DISPATCH_WLH_ANON;
    } else if (_dq_state_is_base_wlh(dq_state)) {
        dsc->dc_data = (dispatch_wlh_t)dq;
    } else {
        _dispatch_wait_compute_wlh(upcast(dq)._dl, dsc);
    }

    if (dsc->dc_data == DISPATCH_WLH_ANON) {
        dsc->dsc_override_qos_floor = dsc->dsc_override_qos =
                (uint8_t)_dispatch_get_basepri_override_qos_floor();
        _dispatch_thread_event_init(&dsc->dsc_event);
    }
    dx_push(dq, dsc, _dispatch_qos_from_pp(dsc->dc_priority));
    _dispatch_trace_runtime_event(sync_wait, dq, 0);
    if (dsc->dc_data == DISPATCH_WLH_ANON) {
        _dispatch_thread_event_wait(&dsc->dsc_event); // acquire
    } else if (!dsc->dsc_wlh_self_wakeup) {
        _dispatch_event_loop_wait_for_ownership(dsc);
    }
    if (dsc->dc_data == DISPATCH_WLH_ANON) {
        _dispatch_thread_event_destroy(&dsc->dsc_event);
        // If _dispatch_sync_waiter_wake() gave this thread an override,
        // ensure that the root queue sees it.
        if (dsc->dsc_override_qos > dsc->dsc_override_qos_floor) {
            _dispatch_set_basepri_override_qos(dsc->dsc_override_qos);
        }
    }
}

可以看到,死锁的部分注释

"dispatch_sync called on queue "
"already owned by current thread"
同步任务调起了一个已经被当前线程占用的队列
unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))这个触发的判断具体如下:

static inline bool
_dq_state_drain_locked_by(uint64_t dq_state, dispatch_tid tid)
{
    return _dispatch_lock_is_locked_by((dispatch_lock)dq_state, tid);
}

static inline bool
_dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid)
{
    // equivalent to _dispatch_lock_owner(lock_value) == tid
    return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}

#define DLOCK_OWNER_MASK            ((dispatch_lock)0xfffffffc)  //c = 1100

结合这个部分的源码,我们可以理解这个判断是这样的:
lock_value - > dq_state 是队列的状态
tid->是线程id。
队列的状态和线程的id按位异或,与上0xfffffffc也就是只有最后两位是0的 最后的结果为0 ,异或运算是相同为0 不同为1。
所以这里的判断一下将要调度的队列,和当前等待的队列是不是一个队列,如果相同则返回YES,造成了矛盾,产生了死锁。而注释的代码也很好的说明了这里:证明要调度的队列和当被锁住的线程 是一个。

五、异步函数dispatch_async源码分析
void
dispatch_async(dispatch_queue_t dq, dispatch_block_t work)
{
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME;
    dispatch_qos_t qos;

    qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}

将任务封装成qos,然后通过_dispatch_continuation_async调用。

_dispatch_continuation_async任务派发,push。

_dispatch_continuation_async(dispatch_queue_class_t dqu,
        dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
    if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
        _dispatch_trace_item_push(dqu, dc);
    }
#else
    (void)dc_flags;
#endif
    return dx_push(dqu._dq, dc, qos);
}

//dx_push
#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)

dx_push本质上调用了dx_vtable的dq_push进一步查看,发现有好多个dq_push:

dq_push
有串行的、并发的、全局队列等,我们先以并发的为例子,就去找_dispatch_lane_concurrent_push:
void
_dispatch_lane_concurrent_push(dispatch_lane_t dq, dispatch_object_t dou,
        dispatch_qos_t qos)
{
    // <rdar://problem/24738102&24743140> reserving non barrier width
    // doesn't fail if only the ENQUEUED bit is set (unlike its barrier
    // width equivalent), so we have to check that this thread hasn't
    // enqueued anything ahead of this call or we can break ordering
    if (dq->dq_items_tail == NULL &&
            !_dispatch_object_is_waiter(dou) &&
            !_dispatch_object_is_barrier(dou) &&
            _dispatch_queue_try_acquire_async(dq)) {
        return _dispatch_continuation_redirect_push(dq, dou, qos);
    }

    _dispatch_lane_push(dq, dou, qos);
}

我们通过符号断点调试并发队列,先进入到_dispatch_continuation_redirect_push

static void
_dispatch_continuation_redirect_push(dispatch_lane_t dl,
        dispatch_object_t dou, dispatch_qos_t qos)
{
    if (likely(!_dispatch_object_is_redirection(dou))) {
        dou._dc = _dispatch_async_redirect_wrap(dl, dou);
    } else if (!dou._dc->dc_ctxt) {
        // find first queue in descending target queue order that has
        // an autorelease frequency set, and use that as the frequency for
        // this continuation.
        dou._dc->dc_ctxt = (void *)
        (uintptr_t)_dispatch_queue_autorelease_frequency(dl);
    }

    dispatch_queue_t dq = dl->do_targetq;
    if (!qos) qos = _dispatch_priority_qos(dq->dq_priority);
    dx_push(dq, dou, qos);
}

而这个方法最终又调用了dx_push,而此时的队列类型通过调试为queue_pthread_root,所以对应的dq_push的参数为_dispatch_root_queue_push,它的具体实现我们进去看一下

void
_dispatch_root_queue_push(dispatch_queue_global_t rq, dispatch_object_t dou,
        dispatch_qos_t qos)
{
#if DISPATCH_USE_KEVENT_WORKQUEUE
    dispatch_deferred_items_t ddi = _dispatch_deferred_items_get();
    if (unlikely(ddi && ddi->ddi_can_stash)) {
        dispatch_object_t old_dou = ddi->ddi_stashed_dou;
        dispatch_priority_t rq_overcommit;
        rq_overcommit = rq->dq_priority & DISPATCH_PRIORITY_FLAG_OVERCOMMIT;

        if (likely(!old_dou._do || rq_overcommit)) {
            dispatch_queue_global_t old_rq = ddi->ddi_stashed_rq;
            dispatch_qos_t old_qos = ddi->ddi_stashed_qos;
            ddi->ddi_stashed_rq = rq;
            ddi->ddi_stashed_dou = dou;
            ddi->ddi_stashed_qos = qos;
            _dispatch_debug("deferring item %p, rq %p, qos %d",
                    dou._do, rq, qos);
            if (rq_overcommit) {
                ddi->ddi_can_stash = false;
            }
            if (likely(!old_dou._do)) {
                return;
            }
            // push the previously stashed item
            qos = old_qos;
            rq = old_rq;
            dou = old_dou;
        }
    }
#endif
#if HAVE_PTHREAD_WORKQUEUE_QOS
    if (_dispatch_root_queue_push_needs_override(rq, qos)) {
        return _dispatch_root_queue_push_override(rq, dou, qos);
    }
#else
    (void)qos;
#endif
    _dispatch_root_queue_push_inline(rq, dou, dou, 1);
}

符号断点接着跟踪来到_dispatch_root_queue_push_override,然后进一步来到_dispatch_root_queue_push_inline->_dispatch_root_queue_poke->_dispatch_root_queue_poke_slow
这个方法又好长好多。里面通过pthread_create创建线程

_dispatch_continuation_init任务封装:

static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu, dispatch_block_t work,
        dispatch_block_flags_t flags, uintptr_t dc_flags)
{
    void *ctxt = _dispatch_Block_copy(work);

    dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        dc->dc_flags = dc_flags;
        dc->dc_ctxt = ctxt;
        // will initialize all fields but requires dc_flags & dc_ctxt to be set
        return _dispatch_continuation_init_slow(dc, dqu, flags);
    }

    dispatch_function_t func = _dispatch_Block_invoke(work);
    if (dc_flags & DC_FLAG_CONSUME) {
        func = _dispatch_call_block_and_release;
    }
    return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}

进行block的初始化。

小结下流程:
1、通过_dispatch_continuation_init方法对任务和优先级进行封装;
2、然后调用dx_push,最终找到自己的对应的dq_push标记的函数去调用相关的方法,并发队列调用的是_dispatch_lane_concurrent_push,最终调用_dispatch_root_queue_push
3、继续进行调用,最终找到_dispatch_root_queue_poke_slow方法,进行线程的创建pthread_create

六、单例dispatch_once_t源码分析

找到源码

void
dispatch_once(dispatch_once_t *val, dispatch_block_t block)
{
    dispatch_once_f(val, block, _dispatch_Block_invoke(block));
}

dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
  //这里转换了val的类型为dispatch_once_gate_t
    dispatch_once_gate_t l = (dispatch_once_gate_t)val; 

#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
    if (likely(v == DLOCK_ONCE_DONE)) {
        return;
    }
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    if (likely(DISPATCH_ONCE_IS_GEN(v))) {
        return _dispatch_once_mark_done_if_quiesced(l, v);
    }
#endif
#endif
    if (_dispatch_once_gate_tryenter(l)) {
        return _dispatch_once_callout(l, ctxt, func);
    }
    return _dispatch_once_wait(l);
}

这里有三个条件:
1、如果已经loaded,直接返回
2、如果第一次被调用,执行_dispatch_once_callout
3、如果正在执行,执行_dispatch_once_wait。

_dispatch_once_gate_tryenter进入:

static inline bool
_dispatch_once_gate_tryenter(dispatch_once_gate_t l)
{
    return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
            (uintptr_t)_dispatch_lock_value_for_self(), relaxed);
}

#define os_atomic_cmpxchg(p, e, v, m) \
        ({ _os_atomic_basetypeof(p) _r = (e); \
        atomic_compare_exchange_strong_explicit(_os_atomic_c11_atomic(p), \
        &_r, v, memory_order_##m, memory_order_relaxed); })

是不是已经没有加锁DLOCK_ONCE_UNLOCKED,没有加锁,进行call_out的操作,加锁的话要进行wait的等待。

_dispatch_once_callout实现

static void
_dispatch_once_callout(dispatch_once_gate_t l, void *ctxt,
        dispatch_function_t func)
{
    _dispatch_client_callout(ctxt, func);
    _dispatch_once_gate_broadcast(l);
}

_dispatch_once_gate_broadcast:

tatic inline void
_dispatch_once_gate_broadcast(dispatch_once_gate_t l)
{
    dispatch_lock value_self = _dispatch_lock_value_for_self();
    uintptr_t v;
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    v = _dispatch_once_mark_quiescing(l);
#else
    v = _dispatch_once_mark_done(l);
#endif
    if (likely((dispatch_lock)v == value_self)) return;
    _dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
}

锁的处理,并且标记为完成。

单例的原理小结:
通过函数dispatch_once_f 对onceToken进行强转,转换成dispatch_once_gate_t类型,是一个锁。这个锁L 通过os_atomic_load函数获取锁的状态,如果此时为DLOCK_ONCE_UNLOCK,证明可以操作,进行call_out,操作完毕进行广播标记完成。
如果此时为DLOCK_ONCE_DONE,直接返回。
如果此时为LOCK状态,说明有任务正在执行,会进入等待状态。等待当前任务完成,获取锁

ps:这部分代码好困难,我自己也看的迷迷糊糊,先参考了挺多博客大致的进行一个梳理,后面再看看源码有新的更好的理解会再更新。(。・_・。)ノ

相关文章

网友评论

      本文标题:24.iOS底层学习之GCD 源码分析(上)

      本文链接:https://www.haomeiwen.com/subject/pelliltx.html