美文网首页
keras 实现 pytorch resnet.py

keras 实现 pytorch resnet.py

作者: 谢小帅 | 来源:发表于2019-03-10 16:42 被阅读0次

keras resnet

from keras.layers import Input, Conv2D, BatchNormalization, Activation, ZeroPadding2D
from keras.layers import MaxPool2D, GlobalAveragePooling2D, Dense
from keras.layers import add  # merge
from keras.models import Model, Sequential
from keras.utils import plot_model

"""implement of Pytorch ResNet"""


def basic_block(input_tensor, filters, stride=1, downsample=None):
    residual = input_tensor
    # 3x3
    x = Conv2D(filters, kernel_size=3, strides=stride, padding='same')(input_tensor)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    # 3x3
    x = Conv2D(filters, kernel_size=3, padding='same')(x)
    x = BatchNormalization(axis=3)(x)
    # layer 内部没有 fm size 变化,layer连接处有
    if downsample:  # 类比 resnet50,identity_block shortcut 没有 downsample,而 conv_block 有
        residual = downsample(input_tensor)
    x = add([x, residual])
    x = Activation('relu')(x)

    return x


def bottleneck(input_tensor, filters, stride=1, downsample=None):
    residual = input_tensor
    # 1x1
    x = Conv2D(filters, kernel_size=1, padding='same')(input_tensor)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    print(x.shape, residual.shape)
    # 3x3 core
    x = Conv2D(filters, kernel_size=3, strides=stride, padding='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    print(x.shape, residual.shape)
    # 1x1
    x = Conv2D(filters * 4, kernel_size=1, padding='same')(x)  # fms * 4
    x = BatchNormalization(axis=3)(x)
    if downsample:
        residual = downsample(input_tensor)
    print(x.shape, residual.shape)
    x = add([x, residual])
    x = Activation('relu')(x)

    return x


def make_layer(input_tensor, block, filters, blocks, stride=1):
    """
    :param input_tensor:
    :param block: basic_block, bottleneck
    :param filters: 输出通道数
    :param blocks: block 重复次数
    :param stride: stage345, stride=2; stage2, 第一层有maxpool,所以stride=1
    :return: layer output
    """
    global in_filters
    downsample = None
    expansion = 4 if block.__name__ == 'bottleneck' else 1

    """residual 是否需要下采样
      basic_block
        - stage2, stride=1, 并且 in_filters = filters * expansion,所以不用 downsample
      bottleneck
        - stage2,虽然 stride=1,但是 in_filters != filters * expansion,需要 downsample 改变 channel
        - stride != 1,需要把 输入 size/2 再和输出相加,stage3,4,5 每个layer的第1个block
      所以第2个条件 对于不同结构 block 操作不同
    """
    if stride != 1 or in_filters != filters * expansion:
        downsample = Sequential([
            Conv2D(filters * expansion, kernel_size=1, strides=stride, padding='same'),
            BatchNormalization(axis=3)
        ])
    in_filters = filters * expansion  # next layer input filters
    # 对于 stage2,虽然 stride 单独列出,但是也没改变 fm size
    out = block(input_tensor, filters=filters, stride=stride, downsample=downsample)  # layer开始部分
    for i in range(1, blocks):
        out = block(out, filters=filters)  # layer内部重复部分 不需要 downsample,stride=1
    return out


in_filters = 64


def ResNet(input_tensor, block, layers, include_top=True, classes=1000):
    # stage1
    x = Conv2D(64, (7, 7), strides=(2, 2),  # 224->112
               padding='same',
               kernel_initializer='he_normal',
               name='conv1')(input_tensor)
    x = BatchNormalization(axis=3, name='conv1_bn')(x)  # channel last
    x = Activation('relu', name='conv1_relu')(x)
    x = MaxPool2D((3, 3), strides=(2, 2), padding='same')(x)  # 112->56

    x = make_layer(x, block, filters=64, blocks=layers[0])  # stage 2
    x = make_layer(x, block, filters=128, blocks=layers[1], stride=2)  # stage 3
    x = make_layer(x, block, filters=256, blocks=layers[2], stride=2)  # stage 4
    x = make_layer(x, block, filters=512, blocks=layers[3], stride=2)  # stage 5

    # fc
    if include_top:
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)

    print(x.shape)

    model = Model(inputs=[inputs], outputs=[x])
    return model


inputs = Input(shape=(224, 224, 3))

resnet18 = ResNet(inputs, block=basic_block, layers=[2, 2, 2, 2], include_top=False)
plot_model(resnet18, to_file='resnet18.png', show_shapes=True)

resnet50 = ResNet(inputs, block=bottleneck, layers=[3, 4, 6, 3], include_top=False)
plot_model(resnet50, to_file='resnet50.png', show_shapes=True)

Pytorch resnet

import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152']


model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


def resnet34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


def resnet50(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model


def resnet152(pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model

相关文章

网友评论

      本文标题:keras 实现 pytorch resnet.py

      本文链接:https://www.haomeiwen.com/subject/putppqtx.html