美文网首页
【034 数据|数据在四个层面上的价值思考 】

【034 数据|数据在四个层面上的价值思考 】

作者: 吴海燕_YuBin | 来源:发表于2018-10-21 11:48 被阅读0次

做后台产品,每天需要考虑成本和收益以及运转流畅。而这些思考和产品建设,都需要数据进行支撑,通过这篇文章来写一下我所理解的数据在4个不同量级和状态下的价值。

1

思考一下,数据是什么?

“掌握数据就掌握一切”,已经成为大部分互联网公司的基本认识,你只要有用户数据,行为数据,关系链数据,就可以在此基础上衍生出很多新的玩法,新的服务等等甚至之前不存在的产品。

那么数据是什么呢?

我理解的数据其实就是我们个人和社会活动中所有状态和行动的记录。这种记录可以是连续的,也可以是离散的。可以是单点的,也可以是关联的。

数据可以由数字构成,也可以由简单的标签构成,可以是复杂的图像,也可以仅仅由“YES” or “NO” 两种形态。

关键的是,你如何定义这个数据,以及如何使用这些数据

如果只是将其存储在物理的计算机存储器中,这些数据就是历史,是对资源的浪费。

2

数据在四个层面上的价值分析

数据价值的分析可以从多个角度进行,应用层面,行业层面,小到个人体重管理,大到国家国际战略决策,都可以阐述数据价值。这篇文章,主要是从数据关系和处理方法角度来看数据有哪些价值,以及为实现这些价值,需要做哪些准备和之前遇到的一些坑。

第一层:孤立数据

孤立数据,也可以看成是一个单点数据,其实就是最基本的表示一个状态或者一个记录。这种数据当然也是有价值的,比如:多个孤立的数据可以刻画一个具体的事物,一个人,一个企业等等,都可以通过单点的数据来进行基本描述。

孤立数据是一切数据分析的前提。对于孤立数据,我想表达的一个思考就是,尽可能的标准化。在数据产品设计的时候,或者在数据表的开发时,就需要讲这些孤立的数据定义青清楚。那个字段,通过哪种标识方式,代表哪个含义。同时这种定义,越广泛的范围采用,孤立数据的价值越大。比如:男/女 这种性别定义就非常简单,估计在全球范围内,都可以通用。

第二层:统计数据

我们在大学时代所学的统计学,概率论基本都是对数据的统计处理方法。统计数据是对一定时间或空间维度的数据进行分布计算,在此基础上,发现一些规律和特征,同时依照这种规律进行未来的预测。

最近有个很有意思的现象,国家在严格控制房产价格,各地政府为了保住乌纱帽,无不在统计数据上做文章,抑制中心地区的高价房出售,同时又大量放出郊区低价房。结果不到一个月,全国房价上涨得到有效控制,有些城市还出现大幅下跌。于是,各地官媒喜大普奔,报道房价下跌,政府有功。

“统计数据会撒谎”也是一个大多数人的认识。我们在应用统计数据的时候,首先需要定义如何统计,统计的目标和价值衡量标准在哪里?

比如:我想看下一个月之内,会员在某一个场景下各个时段的操作频次。这个时候就要问一下自己,一个月的数据是否能真实的反应你所想要的市场规律,是不是要扩大到一个季度或者一年。同时如果你是想分析用户转化,那么是不是多加几个场景纵向比较,以确认在哪个场景去投入更多资源等等。

第三层:关联数据

关联数据就开始深入到多维度上面去了,对一个主体的多维数据进行计算,以发现维度之间的关系,是互相促进的,还是互相抑制的。最优组合点以及价值临近点在哪里?

作为数据挖掘的一个重要方法,关联分析在推进系统里面使用很多。关联数据,可以有效的进行服务打包,商品打包。从海量的销售数据中进行关联数据分析,可以发现很奇特的组合。比如有段时间,我在分析会员来电情况,我们会发现,询问A问题的用户,通常会在电话结束后进行B操作,这种关联性,然我们优化了服务流程,在同类用户中,我们通过对A类来电进行B类服务的推荐,很好的进行了服务推广。达到非常好的效果。

第四层:智能数据

智能数据,就是指通过复杂的机器学习算法进行计算得出的数据,这种数据有时候是无法解释其内在原因的,但是智能化是未来的方向,并且速度越来越快。

我所理解的智能数据,是通过大量的数据训练,来实现内在模式的底层规律建设,在此基础上,对新数据的判断和结果产出。就比如最近很热门的Master 大战人类围棋高手,就是在Master进行了大量围棋基本规则定义,以及无数围棋落子模式训练后,形成的一种具有自我判断和计算意识的围棋模式。它之所以能战胜,更多胜在其计算能力和学习深度上面。比人类有了更多层的预测,并在此基础上判断了每一步的胜率。

智能数据是未来进行决策辅助的重要环节,它将像一个先知一样,协助人类预测未来,警示我们在现有模型下的发展结果。从这个角度上看,恐惧大可不必。

相关文章

  • 【034 数据|数据在四个层面上的价值思考 】

    做后台产品,每天需要考虑成本和收益以及运转流畅。而这些思考和产品建设,都需要数据进行支撑,通过这篇文章来写一下我所...

  • 数据分析思维——业务指标如何建立

    一、数据分析的流程 整个数据分析的流程,可以分为五个步骤,四个层级,这四个层级就是需求层、数据层、分析层跟输出层,...

  • 数据仓库架构设计的概念

    1、数据仓库所处环节 在一个成体系、结构化的数据应用场景下,数据和处理有四个层次: 操作层、数据仓库层、部门/数据...

  • 数据仓库概念总结参考+

    一、数据仓库所处环节 在一个成体系、结构化的数据应用场景下,数据和处理有四个层次: 操作层、数据仓库层、部门/数据...

  • java项目包的命名及作用在项目中的规范

    1.项目分层设计---分包形式划分 controller层:控制层,获取页面上的数据,为界面设置数据,将要实现...

  • 游戏买量的可行性,如何用数据去验证?

    数据除了数据分析的价值,另一层价值就是数据挖掘的价值。 数据分析是依赖于人的经验及人对业务的理解,依赖人的逻辑思维...

  • 数据有价值,运营有门道

    四词故事:数据,运营,变化,决策 数据有价值,运营有门道,变化是永远,决策要思考。 数据有价值 谈数据:数据是未来...

  • web项目分层

    如今,功能多样,处理数据量大的web项目,都采用分层设计,一般分为表示层,业务逻辑层,数据访问层。页面上我们能看到...

  • 大数据的价值,在“用”不在“大”

    大数据的价值,在“用”不在“大” 近日,《关于组织实施促进大数据发展重大工程的通知》提到四个“重点支持”,即大数据...

  • 1.Mysql数据库介绍

    Mysql数据库 思考:用户通过表单提交了很多数据,数据在PHP脚本中绕一圈就没了,那么这个数据有什么价值呢?数据...

网友评论

      本文标题:【034 数据|数据在四个层面上的价值思考 】

      本文链接:https://www.haomeiwen.com/subject/pycbzftx.html