美文网首页
深度学习笔记(九)—— CNN-3

深度学习笔记(九)—— CNN-3

作者: Nino_Lau | 来源:发表于2019-08-02 09:10 被阅读0次

3.FaceNet

有关FaceNet与triplet loss的理论知识请同学们复习理论课有关章节。在这里,我们将用triplet loss训练一个resnet18网络,并用这个网络在mnist数据集上进行KNN分类,具体的,resnet18相当于一个特征提取器,用所有的训练集图片的特征拟合一个KNN分类器,利用这个KNN分类进行预测. 在3.1小节,将给出triplet loss的实现. 3.2小节将实现一个适用于triplet loss训练的resnet18网络. 3.3小节将实现随机选取triplet的dataset, 3.4、3.5小节将分别实现resnet18的训练与测试函数.

embedding size

FaceNet 的作用是将图像嵌入一个d维的空间,在这个d维空间里,同一类图像的特征之间相隔的近,不同类图像的特征之间相隔的远,这个d我们称之为embedding size

3.1 triplet loss

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import os
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable,Function

class PairwiseDistance(Function):
    '''
        compute distance of the embedding features, p is norm, when p is 2, then return L2-norm distance
    '''
    def __init__(self, p):
        super(PairwiseDistance, self).__init__()
        self.norm = p

    def forward(self, x1, x2):
        eps = 1e-6  # in case of zeros
        diff = torch.abs(x1 - x2)     # subtraction
        out = torch.pow(diff, self.norm).sum(dim=1) # square
        return torch.pow(out + eps, 1. / self.norm) # L-p norm


class TripletLoss(Function):
    '''
       Triplet loss function.
       loss = max(diatance(a,p) - distance(a,n) + margin, 0)
       forward method:
           args:
                anchor, positive, negative
           return:
                triplet loss
    '''
    def __init__(self, margin, num_classes=10):
        super(TripletLoss, self).__init__()
        self.margin = margin
        self.num_classes = num_classes
        self.pdist = PairwiseDistance(2) # to calculate distance

    def forward(self, anchor, positive, negative):
        d_p = self.pdist.forward(anchor, positive) # distance of anchor and positive
        d_n = self.pdist.forward(anchor, negative) # distance of anchor and negative
        
        dist_hinge = torch.clamp(self.margin + d_p - d_n, min=0.0) # ensure loss is no less than zero
        loss = torch.mean(dist_hinge)
        return loss

3.2 resnet-18 for triplet loss

class BasicBlock(nn.Module):
    '''
        resnet basic block.
        one block includes two conv layer and one residual
    '''
    expansion = 1
    
    def __init__(self, in_planes, planes, stride=1):

        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out

    
class ResNetTriplet(nn.Module):
    def __init__(self, block, num_blocks, embedding_size=256, num_classes=10):
        super(ResNetTriplet, self).__init__()
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        # feature map size 32x32
        self.layer1 = self._make_layer(block, 64,  num_blocks[0], stride=1)
        # feature map size 32x32
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        # feature map size 16x16
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        # feature map size 8x8
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        # feature map size 4x4
        # as we use resnet basic block, the expansion is 1
        self.linear = nn.Linear(512*block.expansion, embedding_size)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def l2_norm(self,input):
        input_size = input.size()
        buffer = torch.pow(input, 2)
        normp = torch.sum(buffer, 1).add_(1e-10)
        norm = torch.sqrt(normp)
        _output = torch.div(input, norm.view(-1, 1).expand_as(input))
        output = _output.view(input_size)
        return output

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        # normalize the features, then we set margin easily
        self.features = self.l2_norm(out)
        # multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf
        alpha = 10
        self.features = self.features * alpha
        # here we get the 256-d features, next we use those features to make prediction
        return self.features

    
def ResNet18(embedding_size=256, num_classes=10):
    
    return ResNetTriplet(BasicBlock, [2,2,2,2], embedding_size, num_classes)

3.3 triplet dataloader

Question 3

仔细阅读下面代码,对pic_classes的作用进行思考,回答下面问题:下面选取triplet的方式是随机选取,若要改为选择指定类别选取,怎么修改?请写出修改后的两行代码。

Answer

Pic_classes is convenient for us to find the path of the image id in train.csv and test.csv. For example, the corresponding content of pic_classes['0'] is a list of ids of image with a number of 0.

In order to produce a triplet sample, we need to take two pictures from the category of pos_class (one anc and one pos) and one picture from neg_class.

# you need to assign value to selected_pos(neg)_class first
pos_class = selected_pos_class
neg_class = selected_neg_class

Ref. 1 Ref. 2

import numpy as np
import pandas as pd
import torch
from PIL import Image
from torch.utils.data import Dataset


class TripletFaceDataset(Dataset):

    def __init__(self, root_dir, csv_name, num_triplets, transform = None):
        '''
        randomly select triplet,which means anchor,positive and negative are all selected randomly.
        args:
            root_dir : dir of data set
            csv_name : dir of train.csv
            num_triplets: total number of triplets
        '''
        
        self.root_dir          = root_dir
        self.df                = pd.read_csv(csv_name)
        self.num_triplets      = num_triplets
        self.transform         = transform
        self.training_triplets = self.generate_triplets(self.df, self.num_triplets)
        
    @staticmethod
    def generate_triplets(df, num_triplets):
        
        def make_dictionary_for_pic_class(df):

            '''
                make csv to the format that we want
              - pic_classes = {'class0': [class0_id0, ...], 'class1': [class1_id0, ...], ...}
            '''
            pic_classes = dict()
            for idx, label in enumerate(df['class']):
                if label not in pic_classes:
                    pic_classes[label] = []
                pic_classes[label].append(df.iloc[idx, 0])
            return pic_classes
        
        triplets    = []
        classes     = df['class'].unique()
        pic_classes = make_dictionary_for_pic_class(df)
        
        for _ in range(num_triplets):

            '''
              - randomly choose anchor, positive and negative images for triplet loss
              - anchor and positive images in pos_class
              - negative image in neg_class
              - at least, two images needed for anchor and positive images in pos_class
              - negative image should have different class as anchor and positive images by definition
            '''
        
            pos_class = np.random.choice(classes)     # random choose positive class
            neg_class = np.random.choice(classes)     # random choose negative class
            
            # if choose anchor
            while len(pic_classes[pos_class]) < 2:
                pos_class = np.random.choice(classes)
            # if neg in the same class as anchor and pos
            while pos_class == neg_class:
                neg_class = np.random.choice(classes)

            pos_name = df.loc[df['class'] == pos_class, 'name'].values[0] # get positive class's name
            neg_name = df.loc[df['class'] == neg_class, 'name'].values[0] # get negative class's name

            if len(pic_classes[pos_class]) == 2:
                ianc, ipos = np.random.choice(2, size = 2, replace = False)
            else:
                # both anchor and positive images are in pos_class but are not the same image
                ianc = np.random.randint(0, len(pic_classes[pos_class]))  # random choose anchor
                ipos = np.random.randint(0, len(pic_classes[pos_class]))  # random choose positive
                while ianc == ipos:
                    ipos = np.random.randint(0, len(pic_classes[pos_class]))
            ineg = np.random.randint(0, len(pic_classes[neg_class]))      # random choose negative

            triplets.append([pic_classes[pos_class][ianc], pic_classes[pos_class][ipos], pic_classes[neg_class][ineg],
                 pos_class, neg_class, pos_name, neg_name])
        
        return triplets
    
    
    def __getitem__(self, idx):
        
        anc_id, pos_id, neg_id, pos_class, neg_class, pos_name, neg_name = self.training_triplets[idx]
        
        anc_img   = os.path.join(self.root_dir, str(pos_name), str(anc_id) + '.png') # join the path of anchor
        pos_img   = os.path.join(self.root_dir, str(pos_name), str(pos_id) + '.png') # join the path of positive
        neg_img   = os.path.join(self.root_dir, str(neg_name), str(neg_id) + '.png') # join the path of nagetive
        
        anc_img = Image.open(anc_img).convert('RGB') # open the anchor image
        pos_img = Image.open(pos_img).convert('RGB') # open the positive image
        neg_img = Image.open(neg_img).convert('RGB') # open the negative image

        pos_class = torch.from_numpy(np.array([pos_class]).astype('long'))  # make label transform the type we want
        neg_class = torch.from_numpy(np.array([neg_class]).astype('long'))  # make label transform the type we want

        data = [anc_img, pos_img,neg_img]
        label = [pos_class, pos_class, neg_class]

        if self.transform:
            data = [self.transform(img)  # preprocessing the image
                    for img in data]
            
        return data, label
    
    def __len__(self):
        
        return len(self.training_triplets)


3.4 train function for triplet loss

import torchvision.transforms as transforms

def train_facenet(epoch, model, optimizer, margin, num_triplets):
    model.train()
    # preprocessing function for image
    transform = transforms.Compose([
        transforms.Resize(32),
        transforms.CenterCrop(32),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=np.array([0.4914, 0.4822, 0.4465]),
            std=np.array([0.2023, 0.1994, 0.2010])),
    ])
    
    # get dataset of triplet
    
    # num_triplet is adjustable
    train_set = TripletFaceDataset(root_dir     = './mnist/train',
                                   csv_name     = './mnist/train.csv',
                                   num_triplets = num_triplets,
                                   transform    = transform)

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size  = 16,
                                               shuffle     = True)

    total_loss = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        # load data to gpu
        data[0], target[0] = data[0].cuda(device='cuda:1'), target[0].cuda(device='cuda:1')  # anchor to cuda
        data[1], target[1] = data[1].cuda(device='cuda:1'), target[1].cuda(device='cuda:1')  # positive to cuda
        data[2], target[2] = data[2].cuda(device='cuda:1'), target[2].cuda(device='cuda:1')  # negative to cuda

        data[0], target[0] = Variable(data[0]), Variable(target[0]) # anchor
        data[1], target[1] = Variable(data[1]), Variable(target[1]) # positive
        data[2], target[2] = Variable(data[2]), Variable(target[2]) # negative
        # zero setting the grad
        optimizer.zero_grad()
        # forward
        anchor   = model.forward(data[0])
        positive = model.forward(data[1])
        negative = model.forward(data[2])
        
        # margin is adjustable
        loss = TripletLoss(margin=margin, num_classes=10).forward(anchor, positive, negative) # get triplet loss
        total_loss += loss.item()
        # back-propagating
        loss.backward()
        optimizer.step()

    context = 'Train Epoch: {} [{}/{}], Average loss: {:.4f}'.format(
        epoch, len(train_loader.dataset), len(train_loader.dataset), total_loss / len(train_loader))
    print(context)

3.5 test function for triplet loss

关于如何测试的问题,由于triplet loss训练的resnet18网络没有分类器,这个网络的最后一层的输出是一个维度为embedding_size的向量,我们把它当作由模型提取出的特征,所以利用这个特征来做测试。首先保存下训练集上所有图片的特征和标签,用sklearn库的KNeighborsClassifier()拟合成一个KNN分类器,这里的K表示领域的个数,K是一个可调节的参数,在测试集上做验证时,提取图片的特征用KNN分类器做预测即可。

Question 4

仔细阅读下面代码,回答问题:下面的预测方法为KNN预测,若要改为中心点预测的方式,即找出每个类别的离均值点最近的图片做最近邻预测,请简述找出中心点的方法,无需写代码。

Answer 4

  1. First, the model is used to output the one-hot vectors of each type of image - cluster.
  2. Then, the mean value - center - of each cluster is calculated.
  3. Images who are relatively closer to the center in the cluster are found as the representatives.
  4. In the prediction, the similarity between the image and the centers is calculated.
  5. Finally, we obtain the classification result.
from sklearn import neighbors
import pandas
import matplotlib.pyplot as plt
        
def KNN_classifier(model, epoch, n_neighbors):
    '''
        use all train set data to make KNN classifier
    '''
    model.eval()
    # preprocessing function for image
    transform = transforms.Compose([
        transforms.Resize(32),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=np.array([0.485, 0.456, 0.406]),
            std=np.array([0.229, 0.224, 0.225])),
    ])
    # prepare dataset by ImageFolder, data should be classified by directory
    train_set = torchvision.datasets.ImageFolder(root='./mnist/train', transform=transform)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=False)

    features, labels =[], [] # store features and labels
    for i, (data, target) in enumerate(train_loader):
        #  load data to gpu
        data, target = data.cuda(device='cuda:1'), target.cuda(device='cuda:1')
        data, target = Variable(data), Variable(target)
        # forward
        output = model(data)
        # get features and labels to make knn classifier
        features.extend(output.data.cpu().numpy())
        labels.extend(target.data.cpu().numpy())
        
    # n_neighbor is adjustable
    clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors)
    clf.fit(features, labels)

    return clf


def find_nearest_image(feature, label, model, clf):
    
    model.eval()
    
    # preprocessing function for image
    transform = transforms.Compose([
        transforms.Resize(32),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=np.array([0.485, 0.456, 0.406]),
            std=np.array([0.229, 0.224, 0.225])),
    ])
    
    frame = pandas.read_csv('./mnist/train.csv')
    
    # prepare dataset by ImageFolder, data should be classified by directory
    train_set = torchvision.datasets.ImageFolder(root = './mnist/train', transform = transform)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size = 32, shuffle = False)
    
    features = []
    targets = []
    
    for i, (data, target) in enumerate(train_loader):
        # load data to gpu
        data, target = data.cuda(device='cuda:1'), target.cuda(device='cuda:1')
        data, target = Variable(data), Variable(target)
        
        # forward
        output = model.forward(data)
        
        features.extend(output.data.cpu().numpy())
        targets.extend(target.data.cpu().numpy())
        
    min_index = -1
    min_dist = 0
    for index in range(len(features)):
        if targets[index] == label:
            dist = np.linalg.norm(feature - features[index])
            if min_index == -1:
                min_dist = dist
                min_index = 0
            else:
                if dist < min_dist:
                    min_dist = dist
                    min_index = index
    
    return os.path.join('./mnist/train/', str(frame['name'][min_index]), str(frame['id'][min_index]) + '.png')
    

def test_facenet(epoch, model, clf, test = True, last = False):
    model.eval()
    # preprocessing function for image
    transform = transforms.Compose([
        transforms.Resize(32),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=np.array([0.485, 0.456, 0.406]),
            std=np.array([0.229, 0.224, 0.225])),
    ])
    
    frame = pandas.read_csv('./mnist/test.csv')
    
    # prepare dataset by ImageFolder, data should be classified by directory
    test_set = torchvision.datasets.ImageFolder(root = './mnist/test' if test else './mnist/train', transform = transform)
    test_loader = torch.utils.data.DataLoader(test_set, batch_size = 32, shuffle = False)

    correct, total = 0, 0
    features = []
    predicts = []
    targets = []
    
    for i, (data, target) in enumerate(test_loader):
        # load data to gpu
        data, target = data.cuda(device='cuda:1'), target.cuda(device='cuda:1')
        data, target = Variable(data), Variable(target)
        
        # forward
        output = model.forward(data)
        # predict by knn classifier
        predicted = clf.predict(output.data.cpu().numpy())
        
        correct += (torch.tensor(predicted) == target.data.cpu()).sum()
        total += target.size(0)
        
        if test and last:
            features.extend(output.data.cpu().numpy())
            targets.extend(target.data.cpu().numpy())
            predicts.extend(torch.tensor(predicted).numpy())
            
    if test and last:
        err_count = 0
        for index in range(len(features)):
            if not predicts[index] == targets[index]:
                image_path = os.path.join('./mnist/test/', str(frame['name'][index]), str(frame['id'][index]) + '.png')
                image = Image.open(image_path).convert('RGB')
                
                plt.subplot(1,3,1)
                plt.imshow(image)
                
                # save origin images
                error_image_path = os.path.join('./pics/errors/', 'img%d_origin_(%d).png' %(err_count, targets[index]))
                image.save(error_image_path)
                
                path_nearest_target = find_nearest_image(features[index], targets[index], model, clf)
                path_nearest_predict = find_nearest_image(features[index], predicts[index], model, clf)
                
                image_nearest_target = Image.open(path_nearest_target).convert('RGB')
                image_nearest_predict = Image.open(path_nearest_predict).convert('RGB')
                
                plt.subplot(1,3,2)
                plt.imshow(image_nearest_target)
                
                plt.subplot(1,3,3)
                plt.imshow(image_nearest_predict)
                plt.show()
                
                # save nearest taget
                target_image_path = os.path.join('./pics/errors/', 'img%d_near_tgt_(%d).png' %(err_count, targets[index]))
                image_nearest_target.save(target_image_path)
                
                # save nearest predict
                predict_image_path = os.path.join('./pics/errors/', 'img%d_near_pdc_(%d).png' %(err_count, predicts[index]))
                image_nearest_predict.save(predict_image_path)
                
                err_count += 1
                
        print("Error images saved!")
    
    
    context = 'Accuracy of model in ' + ('test' if test else 'train') + \
              ' set is {}/{}({:.2f}%)'.format(correct, total, 100. * float(correct) / float(total))
    print(context)

3.6训练与测试

def run_facenet():
    # hyper parameter
    lr = 0.008
    margin = 2.0
    num_triplets = 8000
    n_neighbors = 5
    embedding_size = 128
    num_epochs = 5
    
    # embedding_size is adjustable
    model = ResNet18(embedding_size, 10)
    
    # load model into GPU device
    device = torch.device('cuda:1')
    model = model.to(device)
    if device == 'cuda':
        model = torch.nn.DataParallel(model)
        cudnn.benchmark = True
    
    # define the optimizer, lr、momentum、weight_decay is adjustable
    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
    
    print('start training')
    for epoch in range(num_epochs):  
        train_facenet(epoch, model, optimizer, margin, num_triplets) # train resnet18 with triplet loss
        clf = KNN_classifier(model, epoch, n_neighbors)     # get knn classifier
        last = False
        if epoch == num_epochs - 1:
            last = True
        test_facenet(epoch, model, clf, False)  # validate train set
        test_facenet(epoch, model, clf, True, last)   # validate test set
        if (epoch + 1) % 4 == 0 :
            lr = lr / 3
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        
run_facenet()
start training
Train Epoch: 0 [8000/8000], Average loss: 0.3779
Accuracy of model in train set is 1899/2000(94.95%)
Accuracy of model in test set is 939/1000(93.90%)
Train Epoch: 1 [8000/8000], Average loss: 0.0987
Accuracy of model in train set is 1967/2000(98.35%)
Accuracy of model in test set is 960/1000(96.00%)
Train Epoch: 2 [8000/8000], Average loss: 0.0527
Accuracy of model in train set is 1970/2000(98.50%)
Accuracy of model in test set is 971/1000(97.10%)
Train Epoch: 3 [8000/8000], Average loss: 0.0376
Accuracy of model in train set is 1983/2000(99.15%)
Accuracy of model in test set is 985/1000(98.50%)
Train Epoch: 4 [8000/8000], Average loss: 0.0165
Accuracy of model in train set is 1994/2000(99.70%)
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
Error images saved!
Accuracy of model in test set is 980/1000(98.00%)

Question 5

训练一个较好的resnet18网络,收集在测试集上所有预测错误的样本图片(1000张测试集图片,分错不应超过30张,5%)。并在训练集上找出离这个样本最近的同类样本和错类样本的图片,并作出简要分析(15%)。例如,对于一个样本sample,正确类别为A,模型将其错分为B,分别找出训练集中A类样本和B类样本中离sample最近的样本图片(注意是图片!注意一定要保存在pics文件夹或者自定义文件夹一同提交,否则TA看不到,将图片在下面展示出来)。

hints:重写 test_facenet()函数
hints:根据特征反向寻找图片可参考下列代码. 需保证shuffle=False,train.csv和test.csv均已给出

Answer 5

To collect the errors among the test set, a director named ./pics/errors serves to save the wrong predictions. test_facenet() is rewritten as above. Errors are saved in format like img + err_count +origin(near_tgt, near_pdc) + (res).

From the results, we can find that most specimen errors occurs when the scripts are too blurry or the digits are too similar. And confusions between 0 and 6, 2 and 3, 3 and 8, 5 and 3 ... are common.

3.7 Hard triplet

Triplet loss的性能与采样方式有很大的关系,这里简述两种hard-triplet的采样方式,batch-hard与semi-hard。

Batch hard

对于每一个minibatch,随机选择P个类,每一类随机挑选K张不同的图片,即一个minibatch有PxK张不同的图片。每一张图片都作为anchor,找出minibatch里面距离anchor最远的正样本和距离最近的负样本,组成一个triplet。loss可表示为:


batch_hard

Semi hard

与batch-hard不同,semi-hard triplet只需要保证minibatch中anchor到positive的距离小于anchor到negative的距离即为semi-hard,见下图,不需要选出minibatch里面距离anchor最远的负样本


semi_hard

Question 6

本次实验是分类任务的最后一次实验,你对分类任务的学习有何感想?

Answer 6

  • It's really any onerous work for only a tiny lift!!!
  • Sometimes, GPU overcome the computing problem, but this also blind us to some extent. We usually do not attach high importance to the computing difficulties. (Bad for algorithm innovation???)
  • The recognition of performances of such complicated NNs are hard to finally verdict, for we lack support from other cases.
  • Some intriguing ticks such as triplet and BCE are introduced in the modules, inspires us and motivating us to eplore further at the meantime.
  • ResNet and DenseNet are really siblings, they come from one family! And it's interesting to see their deviations.
  • From my own perspective, the progression after ResNet is not showing a lot of progress somehow (probably because of the limitation of dataset), so the advancement is still murky for me.
  • I really admire the intelligence of the people who come up with the similarity comparing and loss caculating methods, that's really amazing.

作业附加题:

pytorch实现batch-hard或semi-hard的其中一种,重新训练resnet18,对比上面的随机选择triplet的采样方法,其训练过程和结果有何不同,你有更优的方法吗?(不做不扣分,实现一种有较高加分,鼓励同学们挑战高难度)

相关文章

网友评论

      本文标题:深度学习笔记(九)—— CNN-3

      本文链接:https://www.haomeiwen.com/subject/qsrkdctx.html