sklearn调包侠之逻辑回归

作者: 罗罗攀 | 来源:发表于2018-06-29 10:33 被阅读6次

算法原理

传送门:机器学习实战之Logistic回归

正则化

这里补充下正则化的知识。当一个模型太复杂时,就容易过拟合,解决的办法是减少输入特征的个数,或者获取更多的训练样本。正则化也是用来解决模型过拟合的一种方法。常用的有L1和L2范数做为正则化项。

  • L1范数
    L1范数作为正则化项,会让模型参数θ稀疏话,就是让模型参数向量里为0的元素尽量多。L1就是在成本函数后加入:
  • L2范数
    而L2范数作为正则化项,则是让模型参数尽量小,但不会为0,即尽量让每个特征对预测值都有一些小的贡献。L2就是在成本函数后加入:

实战——乳腺癌检测

数据导入

本次实战依旧是使用sklearn中的数据集,如图所示。

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print(cancer.DESCR)
切分数据集
X = cancer.data
y = cancer.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=33)
模型训练与评估

逻辑回归算法使用sklearn.linear_model 模块中的LogisticRegression方法。常用的参数如下:

  • penalty:设置正则化项,其取值为'l1'或'l2',默认为'l2'。
  • C:正则化强度,C越大,权重越小。
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model.fit(X_train, y_train)
model.score(X_test, y_test)

# result
# 0.94736842105263153

我们换为L1范数:

model2 = LogisticRegression(penalty='l1')
model2.fit(X_train, y_train)
model2.score(X_test, y_test)

# result
# 0.95614035087719296

这里查看模型的参数,发现确实有很多特征的参数为0。

相关文章

  • sklearn调包侠之逻辑回归

    算法原理 传送门:机器学习实战之Logistic回归 正则化 这里补充下正则化的知识。当一个模型太复杂时,就容易过...

  • sklearn调包侠之线性回归

    线性回归原理 如图所示,这是一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的...

  • 11. 分类算法-逻辑回归

    逻辑回归 逻辑回归是解决二分类问题的利器 逻辑回归公式 sklearn逻辑回归的API sklearn.linea...

  • sklearn的基本使用

    前言 于sklearn的使用来说,目前只是想成为一名调包侠,但是调包侠起码也得知道有哪些包可以调,为此找了一些教程...

  • python神经网络尝试

    神经网络是高级的逻辑回归(这句话没毛病吧)在python中使用神经网络除了sklearn调包不同以外,其他的原则都...

  • sklearn调包侠之KNN算法

    天下武功,唯快不破。今天就正式讲解如何通过《sklearn小抄》武林秘籍,成为一代宗师调包侠。欲练此功,必先自宫;...

  • sklearn调包侠之K-Means

    K-Means算法 k-均值算法(K-Means算法)是一种典型的无监督机器学习算法,用来解决聚类问题。 算法流程...

  • sklearn调包侠之PCA降维

    PCA PCA(主成分分析),它是一种维度约减算法,即把高维度数据在损失最小的情况下转换为低纬度数据的算法。 实战...

  • sklearn调包侠之支持向量机

    算法原理 对于支持向量机原理,可参考该系列博客(https://www.cnblogs.com/pinard/p/...

  • sklearn调包侠之朴素贝叶斯

    文档处理 朴素贝叶斯算法常用于文档的分类问题上,但计算机是不能直接理解文档内容的,怎么把文档内容转换为计算机可以计...

网友评论

本文标题:sklearn调包侠之逻辑回归

本文链接:https://www.haomeiwen.com/subject/rdboyftx.html