ThreadPoolExecutor中每个任务都是由单个线程独立处理的,如果出现一个非常耗时的大任务(比如大数组排序),就可能出现线程池中只有一个线程在处理这个大任务,而其他线程却空闲着,这会导致CPU负载不均衡:空闲的处理器无法帮助工作繁忙的处理器。
ForkJoinPool就是用来解决这种问题的:将一个大任务拆分成多个小任务后,使用fork可以将小任务分发给其他线程同时处理,使用join可以将多个线程处理的结果进行汇总;这实际上就是分治思想的并行版本。

public ForkJoinPool() {
this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
defaultForkJoinWorkerThreadFactory, null, false);
}
public ForkJoinPool(int parallelism) {
this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
}
public ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
boolean asyncMode) {
this(checkParallelism(parallelism),
checkFactory(factory),
handler,
asyncMode ? FIFO_QUEUE : LIFO_QUEUE, // 队列工作模式
"ForkJoinPool-" + nextPoolId() + "-worker-");
checkPermission();
}
parallelism:并行级别,通常默认为JVM可用的处理器个数Runtime.getRuntime().availableProcessors()
网友评论