美文网首页
函数式编程

函数式编程

作者: Stago | 来源:发表于2020-05-21 10:10 被阅读0次

Array的常见操作

var arr = [1, 2, 3, 4]
// [2, 4, 6, 8]
var arr2 = arr.map { $0 * 2 }
// [2, 4]
var arr3 = arr.filter { $0 % 2 == 0}
// 10
var arr4 = arr.reduce(0) { $0 + $1 }
// 10
var arr5 = arr.reduce(0, +)
func double(_ i: Int) -> Int { i * 2 }
var arr = [1, 2, 3, 4]
// [2, 4, 6, 8]
print(arr.map(double))
var arr = [1, 2, 3]
// [[1], [2, 2], [3, 3, 3]]
var arr2 = arr.map { Array.init(repeating: $0, count: $0) }
// [1, 2, 2, 3, 3, 3]
var arr3 = arr.flatMap { Array.init(repeating: $0, count: $0) }
var arr = ["123", "test", "jack", "-30"]
// [Optional(123), nil, nil, Optional(-30)]
var arr2 = arr.map { Int($0) }
// [123, -30]
var arr3 = arr.compactMap{ Int($0) }
// 使用reduce实现map、filter的功能
var arr = [1, 2, 3, 4]
print(arr.map{ $0 * 2 }) // [2, 4, 6, 8]
print(arr.reduce([]) { $0 + [$1 * 2] }) // [2, 4, 6, 8]
print(arr.filter { $0 % 2 == 0 }) // [2, 4]
print(arr.reduce([]) { $1 % 2 == 0 ? $0 + [$1] : $0 }) // [2, 4]

lazy的优化

let arr = [1, 2, 3]
let result = arr.lazy.map {
    (i: Int) -> Int in
    print("mapping \(i)")
    return i  * 2
}
print("begin----")
print("mapped", result[0])
print("mapped", result[1])
print("mapped", result[2])
print("end----")

/*
 begin----
 mapping 1
 mapped 2
 mapping 2
 mapped 4
 mapping 3
 mapped 6
 end----
 */

Optional的map和flatMap

var num1: Int? = 10
// Optional(20)
var num2 = num1.map { $0 * 2 }

var num3: Int? = nil
// nil
var num4 = num3.map { $0 * 2 }
var num1: Int? = 10

// Optional(Optional(20))
var num2 = num1.map { Optional.some($0 * 2) }

// Optional(20)
var num3 = num1.flatMap { Optional.some($0 * 2) }
var num1: Int? = 10

// Optional(20)
var num2 = (num1 != nil) ? (num1! + 10): nil
// Optional(20)
var num3 = num1.map { $0 + 10 }
// num2, num3是等价的
var fmt = DateFormatter()
fmt.dateFormat = "yyyy-MM-dd"
var str: String? = "2011-09-10"

// old
var date1 = str != nil ? fmt.date(from: str!) : nil
// new
var date2 = str.flatMap(fmt.date)

var score: Int? = 98
// old
var str1 = score != nil ? "score is \(score!)" : "No score"
// new
var str2 = score.map { "score is \($0)" } ?? "No score"
struct Person {
    var name: String
    var age: Int
}

var items = [
    Person(name: "jack", age: 20),
    Person(name: "rose", age: 21),
    Person(name: "kate", age: 22)
]
// old
func getPerson1(_ name: String) -> Person? {
    let index = items.firstIndex { $0.name == name }
    return index != nil ? items[index!] : nil
}
// new
func getPerson2(_ name: String) -> Person? {
    return items.firstIndex{ $0.name == name }.map { items[$0] }
}
struct Person {
    var name: String
    var age: Int
    init?(_ json: [String : Any]) {
        guard let name = json["name"] as? String,
            let age = json["age"] as? Int else {
            return nil
        }
        self.name = name
        self.age = age
    }
}
var json: Dictionary? = ["name" : "Jack", "age" : 10]
// old
var p1 = json != nil ? Person(json!) : nil
// new
var p2 = json.flatMap(Person.init)

函数式编程(Funtional Programming)

  • 函数式编程(Funtinal Programming, 简称FP)是一种编程范式,也就是如何编写程序的方法论

主要思想:把计算过程尽量分解成一系列可复用函数的调用

主要特征:函数是“第一等公民”

函数与其他数据类型一样的地位,可以赋值给其他变量,也可以作为函数参数、函数返回值

  • 函数式编程最早出现在LISP语言,绝大部分的现代编程语言也对函数式编程做了不同程度的支持,比如

Haskell、JavaScript、Python、Swift、Kotlin、Scala等

  • 函数式编程中几个常用的概念

Higher-Order Function、Function Currying

Functor、Applicative Functor、Monad

  • 参考资料

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

http://www.mokacoding.com/blog/functor-applicative-monads-in-pictures

FP实践 - 传统写法

// 假设要实现以下功能:[(num + 3) * 5 - 1] % 10 / 2
var num = 1

func add(_ v1: Int,  _ v2: Int) -> Int { v1 + v2 }
func sub(_ v1: Int,  _ v2: Int) -> Int { v1 - v2 }
func multiple(_ v1: Int,  _ v2: Int) -> Int { v1 * v2 }
func divide(_ v1: Int,  _ v2: Int) -> Int { v1 / v2 }
func mod(_ v1: Int,  _ v2: Int) -> Int { v1 % v2 }

divide(mod(sub(multiple(add(num, 3), 5), 1), 10), 2)

FP实践 - 函数式写法

func add(_ v: Int) -> (Int) -> Int { { $0 + v } }
func sub(_ v: Int) -> (Int) -> Int { { $0 - v } }
func multiple(_ v: Int) -> (Int) -> Int { { $0 * v } }
func divide(_ v: Int) -> (Int) -> Int { { $0 / v } }
func mod(_ v: Int) -> (Int) -> Int { { $0 % v } }

infix operator >>> : AdditionPrecedence
func >>><A, B, C>(_ f1: @escaping (A) -> B,
                  _ f2: @escaping (B) -> C) -> (A) -> C { { f2(f1($0)) } }

var fn = add(3) >>> multiple(5) >>> sub(1) >>> mod(10) >>> divide(2)
print(fn(num))

高阶函数(Higher-Order Function)

  • 高阶函数是至少满足下列一个条件的函数:

接受一个或多个函数作为输入(map、filter、reduce等)

返回一个函数

  • FP中到处都是高阶函数
func add(_ v: Int) -> (Int) -> Int { { $0 + v } }

柯里化(Currying)

  • 什么是柯里化?

将一个接受多参数的函数变换为一系列只接受耽搁参数的函数

  • Array、Optional的map方法接收的参数就是一个柯里化函数
func add(_ v1: Int, _ v2: Int) -> Int { v1 + v2 }
func sub(_ v1: Int, _ v2: Int) -> Int { v1 - v2 }
func multiple(_ v1: Int, _ v2: Int) -> Int { v1 * v2 }
func divide(_ v1: Int, _ v2: Int) -> Int { v1 / v2 }
func mod(_ v1: Int, _ v2: Int) -> Int { v1 % v2 }

prefix func ~<A, B, C>(_ fn: @escaping (A, B) -> C)
    -> (B) -> (A) -> C { { b in { a in fn(a, b) } } }

infix operator >>> : AdditionPrecedence
func >>><A, B, C>(_ f1: @escaping (A) -> B,
                  _ f2: @escaping (B) -> C) -> (A) -> C { { f2(f1($0)) } }

var num = 1
var fn = (~add)(3) >>> (~multiple)(5) >>> (~sub)(1) >>> (~mod)(10) >>> (~divide)(2)
fn(num)

函子(Functor)

  • 像Array、Optional这样支持map运算的类型,称为函子(Functor)
// Array<Element>
public func map<T>(_ transform: (Element) -> T) -> Array<T>

// Optional<Wrapped>
public func map<U>(_ transform: (Wrapped) -> U) -> Optional<U>
  • 适用函子(Applicative Functor)
  • 对任意一个函子F,如果能支持以下运算,该函子就是一个适用函子
func pure<A>(_ value: A) -> F<A>
func <*><A, B>(fn: F<(A) -> B>, value: F<A>) -> F<B>
  • Optional可以成为适用函子
func pure<A>(_ value: A) -> A? { value }
infix operator <*> : AdditionPrecedence
func <*><A, B>(fn: ((A) -> B)?, value: A?) -> B? {
    guard let f = fn, let v = value else { return nil }
    return f(v)
}

var value: Int? = 10
var fn: ((Int) -> Int)? = { $0 * 2 }
print(fn <*> value as Any)
  • Array可以成为适用函子
func pure<A>(_ value: A) -> [A] { [value] }
func <*><A, B>(fn: [(A) -> B], value: [A]) -> [B] {
var arr: [B] = []
if fn.count == value.count {
for i in fn.startIndex..<fn.endIndex { arr.append(fn[i](value[i]))
} }
return arr }
// [10]
   print(pure(10))
var arr = [{ $0 * 2}, { $0 + 10 }, { $0 - 5 }] <*> [1, 2, 3] // [2, 12, -2]
print(arr)

单子(Monad)

  • 对任意一个类型F, 如果能支持以下运算,那么就可以称为是一个单子(Monad)
func pure<A>(_ value: A) -> F<A>
func flatMap<A, B>(_ value: F<A>, _ fn: (A) -> F<B>) -> F<B>
  • 很显然,Array、Optional都是单子

相关文章

  • RxSwift初探(1)

    一、前提:函数响应式编程思想 简单来说 函数响应式编程 = 函数式编程 + 响应式编程 (1)函数式 函数式编程是...

  • iOS 函数编程 & 链式编程

    函数式(链式)编程 函数式编程概念 函数式编程是种编程范式 函数式编程 Functional Programmin...

  • 函数式编程(一)—— 前置知识

    为什么要学函数式编程? 什么是函数式编程?函数式编程和面向对象编程的不同对于函数式编程思维方式的理解: 函数式编程...

  • 二十二、函数式编程、面向协议式编程

    函数式编程(Functional Prigramming) 函数式编程 函数式编程(Functional Prig...

  • Python中的函数式编程

    函数式编程 说到函数式编程,我们的重点在于为什么要采用函数式编程,而不是什么是函数式编程。 函数式编程的优点:一、...

  • RxSwift-初探

    函数响应式编程 一:函数式 函数式编程简称FP(Functional Programming),函数式编程就是一种...

  • 《Kotlin入门实战》CH5 | 函数与函数式编程

    函数与函数式编程 函数式编程与命令式编程最大的不同是:函数式编程的焦点在于数据的映射,命令式编程(imperati...

  • 函数响应式编程思想 & RxSwift 核心逻辑(一)

    函数响应式编程思想 函数响应式编程思想即是将函数式编程和响应式编程相结合。 函数式编程 顾名思义,就是像函数一样的...

  • RxJava系列|RxJava简介(一)

    函数响应式编程 函数式编程是一种编程范式。 常见的编程范式有:命令式编程、函数式编程和逻辑式编程。 面向对象就是一...

  • 了解C# 函数式编程

    什么是函数式编程 函数式编程是一种编程范式,维基百科对函数式编程定义如下: 函数式编程(英语:functional...

网友评论

      本文标题:函数式编程

      本文链接:https://www.haomeiwen.com/subject/tgynohtx.html