美文网首页
线性回归基本

线性回归基本

作者: 知本集 | 来源:发表于2018-01-03 10:55 被阅读11次

线性回归

方法:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可;
注意:
(1)因为是线性回归,所以学习到的函数为线性函数,即直线函数;
(2)因为是单变量,因此只有一个x;

Cost Function

我们需要使用到Cost Function(代价函数),代价函数越小,说明线性回归地越好(和训练集拟合地越好),当然最小就是0,即完全拟合;
Cost Function的用途:对假设的函数进行评价,cost function越小的函数,说明拟合训练数据拟合的越好;

Gradient Descent(梯度下降)

但是又一个问题引出了,虽然给定一个函数,我们能够根据cost function知道这个函数拟合的好不好,但是毕竟函数有这么多,总不可能一个一个试吧?
因此我们引出了梯度下降:

能够找出cost function函数的最小值;

梯度下降原理:

将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快;

方法

(1)先确定向下一步的步伐大小,我们称为Learning rate;
(2)任意给定一个初始值;
(3)确定一个向下的方向,并向下走预先规定的步伐,并更新
(4)当下降的高度小于某个定义的值,则停止下降;

特点:

(1)初始点不同,获得的最小值也不同,因此梯度下降求得的只是局部最小值;
(2)越接近最小值时,下降速度越慢;

s

相关文章

  • 第一次打卡

    线性回归主要内容包括: 线性回归的基本要素线性回归模型从零开始的实现线性回归模型使用pytorch的简洁实现线性回...

  • 动手学深度学习(一) 线性回归

    线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现...

  • 线性回归

    线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现...

  • 第一天-线性回归,Softmax与分类模型,多层感知机

    线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现...

  • 动手学深度学习

    线性回归 一.主要内容包括: 1.线性回归的基本要素 2.线性回归模型从零开始的实现 3.线性回归模型使用pyto...

  • 动手学深度学习-01打卡

    线性回归 主要内容包括:1.线性回归的基本要素2.线性回归模型从零开始的实现3.线性回归模型使用pytorch的简...

  • 西瓜书 第3章 线性模型 学习笔记

    第3章 线性模型 3.1 基本形式 线性模型:向量形式表示线性模型: 3.2 线性回归 线性回归试图学得:均方误差...

  • 线性回归基本

    线性回归 方法:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线...

  • [FM]从线性回归到FM模型

    一.线性回归 线性回归是万物之源,其基本思想贯穿了很多算法的推导中。 线性回归的模型是: ...

  • 「动手学深度学习」线性回归

    1. 主要内容 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用PyTorch的简洁实现 2. 线...

网友评论

      本文标题:线性回归基本

      本文链接:https://www.haomeiwen.com/subject/twrigxtx.html