Description
X is a good number if after rotating each digit individually by 180 degrees, we get a valid number that is different from X. Each digit must be rotated - we cannot choose to leave it alone.
A number is valid if each digit remains a digit after rotation. 0, 1, and 8 rotate to themselves; 2 and 5 rotate to each other; 6 and 9 rotate to each other, and the rest of the numbers do not rotate to any other number and become invalid.
Now given a positive number N, how many numbers X from 1 to N are good?
Example:
Input: 10
Output: 4
Explanation:
There are four good numbers in the range [1, 10] : 2, 5, 6, 9.
Note that 1 and 10 are not good numbers, since they remain unchanged after rotating.
Note:
- N will be in range
[1, 10000].
Solution
Brute-force, O(n logn), S(1)
isGood()的时间复杂度是log n?感觉很怪,应该是O(1)啊。。
class Solution {
public int rotatedDigits(int N) {
int count = 0;
for (int i = 1; i <= N; ++i) {
if (isGood(i)) {
++count;
}
}
return count;
}
private boolean isGood(int n) {
boolean isRotated = false;
while (n > 0) {
int d = n % 10;
if (d == 2 || d == 5 || d == 6 || d == 9) {
isRotated = true;
} else if (d == 3 || d == 4 || d == 7) {
break;
}
n /= 10;
}
return n <= 0 && isRotated;
}
}
DP, O(n), S(n)
class Solution {
public int rotatedDigits(int N) {
// dp[i] = 0: invalid, 1: valid without rotate,
// 2: valid with rotate
int[] dp = new int[N + 1];
int count = 0; // store the count of dp[i] == 2
for (int i = 0; i <= N; ++i) {
if (i < 10) {
if (i == 0 || i == 1 || i == 8) {
dp[i] = 1;
} else if (i == 2 || i == 5 || i == 6 || i == 9) {
dp[i] = 2;
++count;
}
} else {
int a = i / 10;
int b = i % 10;
if (dp[a] == 1 && dp[b] == 1) {
dp[i] = 1;
} else if (dp[a] > 0 && dp[b] > 0) {
dp[i] = 2;
++count;
}
}
}
return count;
}
}
Generate numbers using DP, O(log n), S(1)
leetcode提供的解法,还没看懂。










网友评论