摘要
- 1.源码下载
- 2.源码编译与安装
- 3.测试代码
1.源码下载
- https://opencv.org/releases/ 选择对应版本的Source
- https://github.com/opencv/opencv github 也是可以的。
2.源码编译
- 1.首先是安装Opencv依赖项
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev liblapacke-dev libxvidcore-dev libx264-dev
- 创建文件夹并编译
主要流程如下:
- 创建文件夹并编译
mkdir bulid && cd bulid
# source activate conda_env
# cmake .. # 占位符号, 有一堆参数需要注意哈
make .
sudo make install
sudo ldconfig
cmake ..
办法一:强制配置,参考https://blog.csdn.net/taifengzikai/article/details/84671322
cmake -D WITH_TBB=ON \
-D BUILD_NEW_PYTHON_SUPPORT=ON \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D WITH_V4L=ON \
-D WITH_OPENGL=ON \
-D WITH_VTK=ON \
-D CMAKE_BUILD_TYPE=RELEASE \
-D OPENCV_EXTRA_MODULES_PATH=/home/fengzicai/Downloads/opencv_contrib-4.0.0/modules \
-D WITH_IPP=OFF \,
-D PYTHON_DEFAULT_EXECUTABLE=/home/fengzicai/anaconda3/envs/tf36/lib/python3.6 \
-D BUILD_opencv_python3=ON \
-D BUILD_opencv_python2=OFF \
-D PYTHON3_EXCUTABLE=/home/fengzicai/anaconda3/envs/tf36/lib/python3.6 \
-D PYTHON3_INCLUDE_DIR=/home/fengzicai/anaconda3/envs/tf36/include/python3.6m \
-D PYTHON3_LIBRARY=/home/fengzicai/anaconda3/envs/tf36/lib/libpython3.6m.so.1.0 \
-D PYTHON_NUMPY_PATH=/home/fengzicai/anaconda3/envs/tf36/lib/python3.6/site-packages \
-D BUILD_EXAMPLES=ON \
-D BUILD_LIBPROTOBUF_FROM_SOURCES=ON \
-D BUILD_opencv_hdf=OFF ..
cmake ..
办法二:使用cmake-gui,操作命令和截图如下。
sudo apt install cmake-gui --fix-missing
cmake-gui

3.测试代码
CMakeLists.txt
cmake_minimum_required(VERSION 3.13)
project(test)
set(CMAKE_CXX_STANDARD 11)
find_package(OpenCV REQUIRED) #第一步,找到包,当然是头文件之类的
add_executable(test test.cpp)
target_link_libraries(test ${OpenCV_LIBS})# 第二步,链接库,当然是so之类的
test.cpp # 打开摄像头的测试程序 (复制的例子opencv-4.1.0/samples/cpp/videocapture_camera.cpp)
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp> // cv::Canny()
#include <iostream>
using namespace cv;
using std::cout; using std::cerr; using std::endl;
int main(int, char**)
{
Mat frame;
cout << "Opening camera..." << endl;
VideoCapture capture(0); // open the first camera
if (!capture.isOpened())
{
cerr << "ERROR: Can't initialize camera capture" << endl;
return 1;
}
cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << endl;
cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << endl;
cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << endl;
cout << endl << "Press 'ESC' to quit, 'space' to toggle frame processing" << endl;
cout << endl << "Start grabbing..." << endl;
size_t nFrames = 0;
bool enableProcessing = false;
int64 t0 = cv::getTickCount();
int64 processingTime = 0;
for (;;)
{
capture >> frame; // read the next frame from camera
if (frame.empty())
{
cerr << "ERROR: Can't grab camera frame." << endl;
break;
}
nFrames++;
if (nFrames % 10 == 0)
{
const int N = 10;
int64 t1 = cv::getTickCount();
cout << "Frames captured: " << cv::format("%5lld", (long long int)nFrames)
<< " Average FPS: " << cv::format("%9.1f", (double)getTickFrequency() * N / (t1 - t0))
<< " Average time per frame: " << cv::format("%9.2f ms", (double)(t1 - t0) * 1000.0f / (N * getTickFrequency()))
<< " Average processing time: " << cv::format("%9.2f ms", (double)(processingTime) * 1000.0f / (N * getTickFrequency()))
<< std::endl;
t0 = t1;
processingTime = 0;
}
if (!enableProcessing)
{
imshow("Frame", frame);
}
else
{
int64 tp0 = cv::getTickCount();
Mat processed;
cv::Canny(frame, processed, 400, 1000, 5);
processingTime += cv::getTickCount() - tp0;
imshow("Frame", processed);
}
int key = waitKey(1);
if (key == 27/*ESC*/)
break;
if (key == 32/*SPACE*/)
{
enableProcessing = !enableProcessing;
cout << "Enable frame processing ('space' key): " << enableProcessing << endl;
}
}
std::cout << "Number of captured frames: " << nFrames << endl;
return nFrames > 0 ? 0 : 1;
}

网友评论