美文网首页文献解读生信分析工具包
[生信基础|免疫量化]cibersort|timer|xcell

[生信基础|免疫量化]cibersort|timer|xcell

作者: 郑宝童 | 来源:发表于2019-07-22 11:22 被阅读79次

参考文献:Quantifying tumor-infiltrating immune cells from transcriptomics data
从转录组学数据中量化肿瘤浸润性免疫细胞


这是一篇关于免疫量化的综述,列举了十多种量化免疫浸润的方法,部分方法可以使用CellMix 包的一些函数实现
Features of the computational tools for the quantification of tumor-infiltrating immune cells from transcriptomics data considered in this review: tool or function name, algorithm type** (M = marker genes, P = partial deconvolution, C = complete deconvolution)**, main method, cell types quantified using the embedded gene sets or signature profiles, code availability, name of the method in the CellMix package [9], reference publication

  • M = marker genes 基于特征基因
  • P = partial deconvolution 基于部分去卷积
  • C = complete deconvolution) 完全去卷积
Tool Type Method Cell types Code availability CellMix ref
TIminer M PrerankedGSEA Different gene sets with 31 [10], 28 [11], and 64 cell types [12] http://icbi.i-med.ac.at/software/timiner/timiner.shtml(Docker image) --- 13
xCell M ssGSEA 64 immune and non-immune cell types http://xcell.ucsf.edu/ (R script, web tool) --- 12
MCP-counter M Geometric mean of expression of marker genes 8 immune cells, fibroblasts, and endothelial cells http://github.com/ebecht/MCPcounter (R script) --- 14
--- P Linear least squares regression 17 immune cell types --- lsfit 15
--- P Constrained least square regression --- qprog 16
DeconRNASeq P Constrained least square regression --- DeconRNASeq package available on Bioconductor (R package) --- 17
PERT P Non-negative maximum likelihood --- Supplementary material in the original publication (Octave) --- 18
CIBERSORT P Nu support vector regression 22 immune cell types https://cibersort.stanford.edu/ (R script, java executable, web tool) --- 19
TIMER P Linear least square regression 6 immune cell types https://cistrome.shinyapps.io/timer/](https://cistrome.shinyapps.io/timer/) (web tool --- 20
EPIC P Constrained least square regression 6 immune cell types, fibroblasts, endothelial cells, and uncharacterized cells https://gfellerlab.shinyapps.io/EPIC_1-1 (R script, web-interface) --- 21
quanTIseq P Constrained least square regression 10 immune cell types, uncharacterized cells http://icbi.i-med.ac.at/software/quantiseq/doc/index.html (Docker image) --- 22
deconf C Non-negative matrix factorization --- Supplementary material in the original publication (R package) deconf 23
ssKL C Non-negative matrix factorization --- --- ssKL 24
ssFrobenius C Non-negative matrix factorization --- --- ssFrobenius 25
DSA C Quadratic programming --- https://github.com/zhandong/DSA (R package) dsa 26
MMAD C Maximum likelihood over the residual sum of squares --- http://sourceforge.net/projects/mmad/(Matlab) --- 27

对于这些方法的简单描述,将在后续的文章中会提及一下

相关文章

网友评论

    本文标题:[生信基础|免疫量化]cibersort|timer|xcell

    本文链接:https://www.haomeiwen.com/subject/uyrilctx.html