美文网首页
2019-03-05 一个二进加法器的RNN模型

2019-03-05 一个二进加法器的RNN模型

作者: gongdiwudu | 来源:发表于2019-03-05 21:43 被阅读0次

#!/usr/bin/python

#coding=utf-8

import copy, numpyas np

np.random.seed(0)

# compute sigmoid nonlinearity

def sigmoid(x):

output =1 / (1 + np.exp(-x))

return output

# convert output of sigmoid function to its derivative

def sigmoid_output_to_derivative(output):

return output * (1 - output)

# training dataset generation

int2binary = {}

binary_dim =8

largest_number =pow(2, binary_dim)

binary = np.unpackbits(

np.array([range(largest_number)],dtype=np.uint8).T,axis=1)

for iin range(largest_number):

int2binary[i] = binary[i]

# input variables

alpha =0.1

input_dim =2

hidden_dim =16

output_dim =1

# initialize neural network weights

synapse_0 =2 * np.random.random((input_dim, hidden_dim)) -1

synapse_1 =2 * np.random.random((hidden_dim, output_dim)) -1

synapse_h =2 * np.random.random((hidden_dim, hidden_dim)) -1

synapse_0_update = np.zeros_like(synapse_0)

synapse_1_update = np.zeros_like(synapse_1)

synapse_h_update = np.zeros_like(synapse_h)

# training logic

"""

这里其实是随机生成一个样本,这个样本包含二进制的a、b、c,其中c=a+b,a_int、b_int、c_int分别是是a、b、c对应的整数格式

"""

for jin range(60000):

# generate a simple addition problem (a + b = c)

    a_int = np.random.randint(largest_number /2)# int version

    a = int2binary[a_int]# binary encoding

    b_int = np.random.randint(largest_number /2)# int version

    b = int2binary[b_int]# binary encoding

# true answer

    c_int = a_int + b_int

c = int2binary[c_int]

# where we'll store our best guess (binary encoded)

    d = np.zeros_like(c)# 这个d在后面用来存我们模型对c的预测值

    overallError =0        # 这个是全局误差,用来观察模型效果

    layer_2_deltas =list()

layer_1_values =list()

layer_1_values.append(np.zeros(hidden_dim))

# moving along the positions in the binary encoding

    for positionin range(binary_dim):

# generate input and output

        X = np.array([[a[binary_dim - position -1], b[binary_dim - position -1]]])

y = np.array([[c[binary_dim - position -1]]]).T

# hidden layer (input ~+ prev_hidden)

        layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))

# output layer (new binary representation)

        layer_2 = sigmoid(np.dot(layer_1, synapse_1))

# did we miss?... if so by how much?

        layer_2_error = y - layer_2

layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))

overallError += np.abs(layer_2_error[0])

# decode estimate so we can print it out

        d[binary_dim - position -1] = np.round(layer_2[0][0])

# store hidden layer so we can use it in the next timestep

        layer_1_values.append(copy.deepcopy(layer_1))

future_layer_1_delta = np.zeros(hidden_dim)

for positionin range(binary_dim):

X = np.array([[a[position], b[position]]])

layer_1 = layer_1_values[-position -1]

prev_layer_1 = layer_1_values[-position -2]

# error at output layer

        layer_2_delta = layer_2_deltas[-position -1]

# error at hidden layer

        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + \

layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)

# let's update all our weights so we can try again

        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)

synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)

synapse_0_update += X.T.dot(layer_1_delta)

future_layer_1_delta = layer_1_delta

synapse_0 += synapse_0_update * alpha

synapse_1 += synapse_1_update * alpha

synapse_h += synapse_h_update * alpha

synapse_0_update *=0

    synapse_1_update *=0

    synapse_h_update *=0

    # print out progress

    if (j %1000 ==0):

print("Error:" +str(overallError) )

print("Pred:" +str(d) )

print("True:" +str(c) )

out =0

        for index, xin enumerate(reversed(d)):

out += x *pow(2, index)

print(str(a_int) +" + " +str(b_int) +" = " +str(out) )

print("------------"  )

相关文章

  • 2019-03-05 一个二进加法器的RNN模型

    #!/usr/bin/python #coding=utf-8 import copy, numpyas np n...

  • 计算机原理

    1利用逻辑门电路构造二进制加法器

  • Lecture 10 循环神经网络

    本课重点: RNN的概念与多种形式 语言模型 图像标注、视觉问答、注意力模型 RNN梯度流 1 RNN的概念与多种...

  • NLP in TensorFlow: 不同的神经网络模型

    模型包括: 双向RNN,多层双向RNN,CNN,CNN+RNN。 导入数据和预处理 single bidirect...

  • 序列模型简介——RNN, Bidirectional RNN,

    摘要: 序列模型大集合——RNN, Bidirectional RNN, LSTM, GRU 既然我们已经有了前馈...

  • RNN

    RNN RNN 是一种利用神经网络对序列模型的通用模型 利用历史信息结合当前输入进行预测 适合解决时间序列输入输出...

  • RNN模型笔记

    模型是什么 众所周知,RNN的特点是将以前保留的信息,传递给未来,使得RNN模型具有记忆的功能,其主要的原理类似于...

  • 计算机系统003 - 硬件体系

    前一篇中粗略讲述了二进制加法运算的过程,其中假定数据是从寄存器直接装载到加法器两端,加法器产生的结果也同样保存在另...

  • Naive RNN & LSTM & GRU

    对于做NLP的新人来说第一个接触到的模型大概就是RNN,RNN 应该算是NLP任务中Hello World了。对于...

  • RNN LSTM语言模型 ——RNN

    RNN的结构 RNN的缺点 ref:https://blog.csdn.net/jizhidexiaoming/a...

网友评论

      本文标题:2019-03-05 一个二进加法器的RNN模型

      本文链接:https://www.haomeiwen.com/subject/vlyauqtx.html