美文网首页
经典卷积神经网络

经典卷积神经网络

作者: 原上的小木屋 | 来源:发表于2020-09-29 20:38 被阅读0次

六步法实现LeNet(1998)、AlexNet(2012)、VGGNet(2014)、InceptionNet(2014)、ResNet(2015)

LeNet由Yann LeCun于1998年提出,卷积神经网络开篇之作

在统计卷积神经网络层数时,一般只统计卷积计算层和全连接计算层,其余操作可以认为是卷积计算层的附属。LeNet卷积神经网络共有5层,包括2层卷积层加上3层全连接层

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model

np.set_printoptions(threshold=np.inf)

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class LeNet5(Model):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.c1 = Conv2D(filters=6, kernel_size=(5, 5),
                         activation='sigmoid')
        self.p1 = MaxPool2D(pool_size=(2, 2), strides=2)

        self.c2 = Conv2D(filters=16, kernel_size=(5, 5),
                         activation='sigmoid')
        self.p2 = MaxPool2D(pool_size=(2, 2), strides=2)

        self.flatten = Flatten()
        self.f1 = Dense(120, activation='sigmoid')
        self.f2 = Dense(84, activation='sigmoid')
        self.f3 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.c1(x)
        x = self.p1(x)

        x = self.c2(x)
        x = self.p2(x)

        x = self.flatten(x)
        x = self.f1(x)
        x = self.f2(x)
        y = self.f3(x)
        return y


model = LeNet5()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/LeNet5.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

###############################################    show   ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
Epoch 1/5
1563/1563 [==============================] - 12s 8ms/step - loss: 2.0554 - sparse_categorical_accuracy: 0.2283 - val_loss: 1.8637 - val_sparse_categorical_accuracy: 0.3102
Epoch 2/5
1563/1563 [==============================] - 12s 8ms/step - loss: 1.7815 - sparse_categorical_accuracy: 0.3454 - val_loss: 1.6746 - val_sparse_categorical_accuracy: 0.3800
Epoch 3/5
1563/1563 [==============================] - 12s 7ms/step - loss: 1.6476 - sparse_categorical_accuracy: 0.3935 - val_loss: 1.5669 - val_sparse_categorical_accuracy: 0.4154
Epoch 4/5
1563/1563 [==============================] - 12s 8ms/step - loss: 1.5415 - sparse_categorical_accuracy: 0.4346 - val_loss: 1.5874 - val_sparse_categorical_accuracy: 0.4130
Epoch 5/5
1563/1563 [==============================] - 7s 4ms/step - loss: 1.4767 - sparse_categorical_accuracy: 0.4622 - val_loss: 1.4263 - val_sparse_categorical_accuracy: 0.4744
Model: "le_net5"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              multiple                  456       
_________________________________________________________________
max_pooling2d (MaxPooling2D) multiple                  0         
_________________________________________________________________
conv2d_1 (Conv2D)            multiple                  2416      
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 multiple                  0         
_________________________________________________________________
flatten (Flatten)            multiple                  0         
_________________________________________________________________
dense (Dense)                multiple                  48120     
_________________________________________________________________
dense_1 (Dense)              multiple                  10164     
_________________________________________________________________
dense_2 (Dense)              multiple                  850       
=================================================================
Total params: 62,006
Trainable params: 62,006
Non-trainable params: 0
_________________________________________________________________
output_1_1.png

AlexNet网络诞生于2012年,当年ImageNet竞赛的冠军,Top5错误率为16.4%

使用Relu激活函数,使用Dropout缓解过拟合。共有8层,5层卷积层加3层全连接层

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model

np.set_printoptions(threshold=np.inf)

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class AlexNet8(Model):
    def __init__(self):
        super(AlexNet8, self).__init__()
        self.c1 = Conv2D(filters=96, kernel_size=(3, 3))
        self.b1 = BatchNormalization()
        self.a1 = Activation('relu')
        self.p1 = MaxPool2D(pool_size=(3, 3), strides=2)

        self.c2 = Conv2D(filters=256, kernel_size=(3, 3))
        self.b2 = BatchNormalization()
        self.a2 = Activation('relu')
        self.p2 = MaxPool2D(pool_size=(3, 3), strides=2)

        self.c3 = Conv2D(filters=384, kernel_size=(3, 3), padding='same',
                         activation='relu')
                         
        self.c4 = Conv2D(filters=384, kernel_size=(3, 3), padding='same',
                         activation='relu')
                         
        self.c5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same',
                         activation='relu')
        self.p3 = MaxPool2D(pool_size=(3, 3), strides=2)

        self.flatten = Flatten()
        self.f1 = Dense(2048, activation='relu')
        self.d1 = Dropout(0.5)
        self.f2 = Dense(2048, activation='relu')
        self.d2 = Dropout(0.5)
        self.f3 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)

        x = self.c2(x)
        x = self.b2(x)
        x = self.a2(x)
        x = self.p2(x)

        x = self.c3(x)

        x = self.c4(x)

        x = self.c5(x)
        x = self.p3(x)

        x = self.flatten(x)
        x = self.f1(x)
        x = self.d1(x)
        x = self.f2(x)
        x = self.d2(x)
        y = self.f3(x)
        return y


model = AlexNet8()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/AlexNet8.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

###############################################    show   ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
Epoch 1/5
1563/1563 [==============================] - 88s 57ms/step - loss: 1.6349 - sparse_categorical_accuracy: 0.3951 - val_loss: 1.5745 - val_sparse_categorical_accuracy: 0.4296
Epoch 2/5
1563/1563 [==============================] - 89s 57ms/step - loss: 1.2938 - sparse_categorical_accuracy: 0.5426 - val_loss: 1.6495 - val_sparse_categorical_accuracy: 0.4515
Epoch 3/5
1563/1563 [==============================] - 90s 57ms/step - loss: 1.1614 - sparse_categorical_accuracy: 0.5939 - val_loss: 1.3964 - val_sparse_categorical_accuracy: 0.5416
Epoch 4/5
1563/1563 [==============================] - 90s 57ms/step - loss: 1.0716 - sparse_categorical_accuracy: 0.6314 - val_loss: 1.1833 - val_sparse_categorical_accuracy: 0.5871
Epoch 5/5
1563/1563 [==============================] - 89s 57ms/step - loss: 1.0096 - sparse_categorical_accuracy: 0.6524 - val_loss: 1.0562 - val_sparse_categorical_accuracy: 0.6396
Model: "alex_net8"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_2 (Conv2D)            multiple                  2688      
_________________________________________________________________
batch_normalization (BatchNo multiple                  384       
_________________________________________________________________
activation (Activation)      multiple                  0         
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 multiple                  0         
_________________________________________________________________
conv2d_3 (Conv2D)            multiple                  221440    
_________________________________________________________________
batch_normalization_1 (Batch multiple                  1024      
_________________________________________________________________
activation_1 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 multiple                  0         
_________________________________________________________________
conv2d_4 (Conv2D)            multiple                  885120    
_________________________________________________________________
conv2d_5 (Conv2D)            multiple                  1327488   
_________________________________________________________________
conv2d_6 (Conv2D)            multiple                  884992    
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 multiple                  0         
_________________________________________________________________
flatten_1 (Flatten)          multiple                  0         
_________________________________________________________________
dense_3 (Dense)              multiple                  2099200   
_________________________________________________________________
dropout (Dropout)            multiple                  0         
_________________________________________________________________
dense_4 (Dense)              multiple                  4196352   
_________________________________________________________________
dropout_1 (Dropout)          multiple                  0         
_________________________________________________________________
dense_5 (Dense)              multiple                  20490     
=================================================================
Total params: 9,639,178
Trainable params: 9,638,474
Non-trainable params: 704
_________________________________________________________________
output_3_1.png

VGGNet网络诞生于2014年,当年ImageNet竞赛的冠军,Top5错误率减小到7.3%

VGGNet使用小尺寸卷积核,在减少参数的同时,提高了识别准确率,VGG网络规整,非常适合硬件加速。共计16层结构,包括13层卷积操作和3层全连接操作。通过增加卷积核的个数,增加特征图的深度,保持了信息的承载能力

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model

np.set_printoptions(threshold=np.inf)

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class VGG16(Model):
    def __init__(self):
        super(VGG16, self).__init__()
        self.c1 = Conv2D(filters=64, kernel_size=(3, 3), padding='same')  # 卷积层1
        self.b1 = BatchNormalization()  # BN层1
        self.a1 = Activation('relu')  # 激活层1
        self.c2 = Conv2D(filters=64, kernel_size=(3, 3), padding='same', )
        self.b2 = BatchNormalization()  # BN层1
        self.a2 = Activation('relu')  # 激活层1
        self.p1 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        self.d1 = Dropout(0.2)  # dropout层

        self.c3 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')
        self.b3 = BatchNormalization()  # BN层1
        self.a3 = Activation('relu')  # 激活层1
        self.c4 = Conv2D(filters=128, kernel_size=(3, 3), padding='same')
        self.b4 = BatchNormalization()  # BN层1
        self.a4 = Activation('relu')  # 激活层1
        self.p2 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        self.d2 = Dropout(0.2)  # dropout层

        self.c5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')
        self.b5 = BatchNormalization()  # BN层1
        self.a5 = Activation('relu')  # 激活层1
        self.c6 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')
        self.b6 = BatchNormalization()  # BN层1
        self.a6 = Activation('relu')  # 激活层1
        self.c7 = Conv2D(filters=256, kernel_size=(3, 3), padding='same')
        self.b7 = BatchNormalization()
        self.a7 = Activation('relu')
        self.p3 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        self.d3 = Dropout(0.2)

        self.c8 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
        self.b8 = BatchNormalization()  # BN层1
        self.a8 = Activation('relu')  # 激活层1
        self.c9 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
        self.b9 = BatchNormalization()  # BN层1
        self.a9 = Activation('relu')  # 激活层1
        self.c10 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
        self.b10 = BatchNormalization()
        self.a10 = Activation('relu')
        self.p4 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        self.d4 = Dropout(0.2)

        self.c11 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
        self.b11 = BatchNormalization()  # BN层1
        self.a11 = Activation('relu')  # 激活层1
        self.c12 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
        self.b12 = BatchNormalization()  # BN层1
        self.a12 = Activation('relu')  # 激活层1
        self.c13 = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
        self.b13 = BatchNormalization()
        self.a13 = Activation('relu')
        self.p5 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
        self.d5 = Dropout(0.2)

        self.flatten = Flatten()
        self.f1 = Dense(512, activation='relu')
        self.d6 = Dropout(0.2)
        self.f2 = Dense(512, activation='relu')
        self.d7 = Dropout(0.2)
        self.f3 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.c2(x)
        x = self.b2(x)
        x = self.a2(x)
        x = self.p1(x)
        x = self.d1(x)

        x = self.c3(x)
        x = self.b3(x)
        x = self.a3(x)
        x = self.c4(x)
        x = self.b4(x)
        x = self.a4(x)
        x = self.p2(x)
        x = self.d2(x)

        x = self.c5(x)
        x = self.b5(x)
        x = self.a5(x)
        x = self.c6(x)
        x = self.b6(x)
        x = self.a6(x)
        x = self.c7(x)
        x = self.b7(x)
        x = self.a7(x)
        x = self.p3(x)
        x = self.d3(x)

        x = self.c8(x)
        x = self.b8(x)
        x = self.a8(x)
        x = self.c9(x)
        x = self.b9(x)
        x = self.a9(x)
        x = self.c10(x)
        x = self.b10(x)
        x = self.a10(x)
        x = self.p4(x)
        x = self.d4(x)

        x = self.c11(x)
        x = self.b11(x)
        x = self.a11(x)
        x = self.c12(x)
        x = self.b12(x)
        x = self.a12(x)
        x = self.c13(x)
        x = self.b13(x)
        x = self.a13(x)
        x = self.p5(x)
        x = self.d5(x)

        x = self.flatten(x)
        x = self.f1(x)
        x = self.d6(x)
        x = self.f2(x)
        x = self.d7(x)
        y = self.f3(x)
        return y


model = VGG16()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/VGG16.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

###############################################    show   ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
Epoch 1/5
1563/1563 [==============================] - 243s 156ms/step - loss: 1.8934 - sparse_categorical_accuracy: 0.2371 - val_loss: 1.8404 - val_sparse_categorical_accuracy: 0.3229
Epoch 2/5
1563/1563 [==============================] - 242s 155ms/step - loss: 1.4783 - sparse_categorical_accuracy: 0.4276 - val_loss: 1.4761 - val_sparse_categorical_accuracy: 0.4665
Epoch 3/5
1563/1563 [==============================] - 242s 155ms/step - loss: 1.1642 - sparse_categorical_accuracy: 0.5907 - val_loss: 1.1908 - val_sparse_categorical_accuracy: 0.5724
Epoch 4/5
1563/1563 [==============================] - 242s 155ms/step - loss: 0.9775 - sparse_categorical_accuracy: 0.6679 - val_loss: 1.0298 - val_sparse_categorical_accuracy: 0.6609
Epoch 5/5
1563/1563 [==============================] - 243s 155ms/step - loss: 0.8571 - sparse_categorical_accuracy: 0.7136 - val_loss: 0.8510 - val_sparse_categorical_accuracy: 0.7127
Model: "vg_g16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_7 (Conv2D)            multiple                  1792      
_________________________________________________________________
batch_normalization_2 (Batch multiple                  256       
_________________________________________________________________
activation_2 (Activation)    multiple                  0         
_________________________________________________________________
conv2d_8 (Conv2D)            multiple                  36928     
_________________________________________________________________
batch_normalization_3 (Batch multiple                  256       
_________________________________________________________________
activation_3 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 multiple                  0         
_________________________________________________________________
dropout_2 (Dropout)          multiple                  0         
_________________________________________________________________
conv2d_9 (Conv2D)            multiple                  73856     
_________________________________________________________________
batch_normalization_4 (Batch multiple                  512       
_________________________________________________________________
activation_4 (Activation)    multiple                  0         
_________________________________________________________________
conv2d_10 (Conv2D)           multiple                  147584    
_________________________________________________________________
batch_normalization_5 (Batch multiple                  512       
_________________________________________________________________
activation_5 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 multiple                  0         
_________________________________________________________________
dropout_3 (Dropout)          multiple                  0         
_________________________________________________________________
conv2d_11 (Conv2D)           multiple                  295168    
_________________________________________________________________
batch_normalization_6 (Batch multiple                  1024      
_________________________________________________________________
activation_6 (Activation)    multiple                  0         
_________________________________________________________________
conv2d_12 (Conv2D)           multiple                  590080    
_________________________________________________________________
batch_normalization_7 (Batch multiple                  1024      
_________________________________________________________________
activation_7 (Activation)    multiple                  0         
_________________________________________________________________
conv2d_13 (Conv2D)           multiple                  590080    
_________________________________________________________________
batch_normalization_8 (Batch multiple                  1024      
_________________________________________________________________
activation_8 (Activation)    multiple                  0         
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 multiple                  0         
_________________________________________________________________
dropout_4 (Dropout)          multiple                  0         
_________________________________________________________________
conv2d_14 (Conv2D)           multiple                  1180160   
_________________________________________________________________
batch_normalization_9 (Batch multiple                  2048      
_________________________________________________________________
activation_9 (Activation)    multiple                  0         
_________________________________________________________________
conv2d_15 (Conv2D)           multiple                  2359808   
_________________________________________________________________
batch_normalization_10 (Batc multiple                  2048      
_________________________________________________________________
activation_10 (Activation)   multiple                  0         
_________________________________________________________________
conv2d_16 (Conv2D)           multiple                  2359808   
_________________________________________________________________
batch_normalization_11 (Batc multiple                  2048      
_________________________________________________________________
activation_11 (Activation)   multiple                  0         
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 multiple                  0         
_________________________________________________________________
dropout_5 (Dropout)          multiple                  0         
_________________________________________________________________
conv2d_17 (Conv2D)           multiple                  2359808   
_________________________________________________________________
batch_normalization_12 (Batc multiple                  2048      
_________________________________________________________________
activation_12 (Activation)   multiple                  0         
_________________________________________________________________
conv2d_18 (Conv2D)           multiple                  2359808   
_________________________________________________________________
batch_normalization_13 (Batc multiple                  2048      
_________________________________________________________________
activation_13 (Activation)   multiple                  0         
_________________________________________________________________
conv2d_19 (Conv2D)           multiple                  2359808   
_________________________________________________________________
batch_normalization_14 (Batc multiple                  2048      
_________________________________________________________________
activation_14 (Activation)   multiple                  0         
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 multiple                  0         
_________________________________________________________________
dropout_6 (Dropout)          multiple                  0         
_________________________________________________________________
flatten_2 (Flatten)          multiple                  0         
_________________________________________________________________
dense_6 (Dense)              multiple                  262656    
_________________________________________________________________
dropout_7 (Dropout)          multiple                  0         
_________________________________________________________________
dense_7 (Dense)              multiple                  262656    
_________________________________________________________________
dropout_8 (Dropout)          multiple                  0         
_________________________________________________________________
dense_8 (Dense)              multiple                  5130      
=================================================================
Total params: 15,262,026
Trainable params: 15,253,578
Non-trainable params: 8,448
_________________________________________________________________
output_5_1.png

InceptionNet网络诞生于2014年,当年ImageNet竞赛的冠军,Top5错误率为6.67%

InceptionNet引入了Inception结构块,在同一层网络内使用了不同尺寸的卷积核,提高了模型感知力,提取不同尺寸的特征。使用了批标准化,缓解了梯度消失。InceptionNet的核心是它的基本单元Inception结构块

Inception结构块包含四个分支,分别经过 output_7_1.png

ResNet网络诞生于2015年,当年ImageNet竞赛的冠军,Top5错误率为3.57%

ResNet提出了层间残差跳连,引入了前方信息,缓解梯度消失,使神经网络层数增加成为可能,作者何凯明。何凯明发现56层卷积网络的错误率要高于20层卷积网络的错误率,他认为单纯堆叠神经网络层数会使神经网络模型退化,以至于后边的特征丢失了前边特征的原本模样。于是他用了一根跳连线,将前边的特征直接接到了后边,使这里的输出结果为 output_9_1.png

五个经典卷积神经网络总结

  1. LeNet:卷积网络开篇之作,共享卷积核,减少网络参数
  2. AlexNet:使用Relu激活函数,提升训练速度;使用Dropout,缓解过拟合
  3. VGGNet:小尺寸卷积核减少参数,网络结构规整,适合并行加速
  4. InceptionNet:一层内使用不同尺寸卷积核,提升感知力。使用批标准化,缓解梯度消失
  5. ResNet:层间残差跳连,引入前方信息,缓解模型退化,使神经网络层数加深成为可能

相关文章

网友评论

      本文标题:经典卷积神经网络

      本文链接:https://www.haomeiwen.com/subject/vsqyuktx.html