人工智能导致的不平等
人工智能偏重特定技能,会形成两极分化的就业市场,排挤掉中产阶级。我们已经看到网络世界走向垄断的趋势,短短几年内,许多核心网络功能已经被垄断。无论在我国或美国,少数几家互联网巨头掌握了大部分的互联网。人工智能会将同样的垄断趋势带到互联网之外的行业中,并逐步侵蚀市场竞争机制。
幸存的工作岗位分为两批人:一批顶尖收入,如CEO、投资人等;一批收入一般的,如按摩师、家庭护理人员等。但是问题的严重性在于,许多构成中产阶级基石的职业将被清空,造成更大的贫富差距。如卡车司机、会计人员、办公室经理等。
人工智能还可能会滋生21世纪的阶级制度:人工智能精英阶级和“无用阶级”。无用阶级指的是史学家尤瓦尔·诺亚·赫拉利所说的永远也无法创造出足够的经济价值养活自己的人。
作者担心,利用人工智能获取巨大利益会创造出显著不平等,同时也导致社会的不稳定。大量的年轻人曾是发展中国家的最大优势,但在人工智能跨越式发展的未来,却会变成拖累和潜在的不稳定因素。
而国与国之间,财富分配更加不均衡。人工智能实力薄弱的国家,会发现自己的经济发展没有机会再进一步,只能沦为人工智能超级大国的附庸。
个人危机
自工业革命以来的数个世纪里,工作不仅是一种谋生手段,更是一种自我认可以及生活意义的源泉。工作让我们过得充实,给人一种规律感,让我们和其他人联结。切断这些联系,或者说迫使人们从事低于过去社会地位的工作,影响的不只是收入,还会直接伤害到我们的认同感和价值感。
人工智能导致的失业,带来的心理创伤非常大。人们可能永久性地被经济体系拒之门外,随之产生的压倒性的无力感,会让人感觉自己的存在没有了意义。这不得不迫使我们重新思考工作、价值和人的意义之间的关系。
人机共存的蓝图
要迎接这些挑战,不能只做被动反应,必须主动利用人工智能创造的物质财富,重构经济体系,重写社会契约。同时宣扬人性,重建经济激励机制,激励造福社会的行为;促使全方位的经济和社会转型。
1.3R:再培训、减时间、重分配
硅谷针对人工智能将引发的失业问题,提出三类解决方案:就业者再培训(retraining workers)、减少工作时间(reducing work hours)或重新分配收入(redistributing income)。
①就业者再培训。提倡工人再培训的方案认为有两种趋势对于人工智能时代就业至关重要:在线教育和终身学习。失业人员通过免费或付费的在线教育平台获得培训和指导,从而找到新工作;并且可以不断更新技能,成为“终身学习者”。
但作者认为,如果考虑到人工智能对就业影响的深度和广度,该方法远远不能解决大量失业的问题。因为人工智能的发展非常迅猛,就业者不得不每隔几年就更换职业。
②减少工时、工作共享。以谷歌创始人拉里·佩奇为首的一批人,提出了减少工时,多人“分享”同一份工作的方案。这种方案可以有效减少失业人数,美国好几个州已经落实这个方案,政府为这些人员损失的工资给予了一定补偿。
但是面对人工智能对工作岗位持续不断的冲击,这种方案可能会失去后劲。因为就业者的净收入减少了,政府可负担的资助也是有限的。
③重分配:全民基本收入和最低保障收入
全民基本收入(Universal Basic Income,UBI)是时下最流行的再分配方案,其核心思想很简单——每个公民从政府那里定期领取收入补助金,且没有任何附加条件。
另一个再分配方案称为最低保障收入(Guaranteed Minimum Income,GMI),即仅向穷人提供补助金,并建立“最低收入”的门槛:保证就业者的收入不会低于这条线,类似于我国的“低保”政策。
再分配方案的资金来源,大部分是对人工智能时代“赢家”征收的巨额税款,如从人工智能谋利的传统公司等。但这种方案也存在争议。有人认为补助金不能太多,这样就业者们不会失去找工作的动力。也有人认为补助金要覆盖因失业造成的收入损失。从这个角度看,UBI可能成为迈向“休闲社会”的关键一步,人们完全摆脱了对工作的需求,可以自由地追求自己的梦想。
但是作者认为,UBI无疑就像止痛药。首先,单一的UBI政策就是不劳而获,这种方案可能导致接受补贴的人无所事事,沉迷游戏、烟酒甚至毒品。其次,即便一个人非常上进,但是如果政府不拿出就业和培训的可行方案,即便可以凭自己找到工作,也很有可能很快就被人工智能取代。我们必须想办法利用人工智能的优势,同时更加重视我们与机器之间的本质区别,那就是爱的能力。
2.人机共存:优化与人情
自由市场创造出来的工作,很多都是结合人类与机器能力的协作机制:由人工智能负责例行的、重复性的优化任务,人类负责需要创意和战略思维的工作和处理人际关系。这需要重新调整很多岗位,也会创造新的工作,让人类和机器联手提供高效率且人性化的优质服务。
①STEM教育
在就业风险评估图中,这种人机协作机制在未来可以为左上角“结合区”的群体提供最多的就业机会——人工智能做分析性思考,人类则用温暖和关爱传达机器所做的分析。不仅如此,“安全区”和“慢变区”的工作也会有类似的改变趋势。所以,作者认为,我们应该发展STEM教育——STEM是科学(Science)、技术(Technology)、工程师(Engineering)、数学(Mathematics)四门学科,在教育上强调创意和思维的培养,这与下文要分析的关爱型工作,共同构成未来教育的两个重点
③共享经济
互联网引领的共享经济潮流将大大缓解失业的情况,并重新定义人工智能时代的工作。许多商品和服务都可以数据化并不断通过算法优化,但共享经济中那些碎片化、个性化的工作仍然只有人类可以完成。比如滴滴和Uber等网约车公司极大地提高了效率并吸引更多的人加入,也增加了用户需求和服务人员实际获得的工资。
④全新服务类工作
除了共享经济既定的角色之外,还会出现我们今天无法想象的全新服务类工作。例如人们可能会雇用“换季师”,每次换季帮助自己整理衣柜,并让衣柜散发当季的花香。人工智能在解放我们时间的同时,具有创造力的企业和普通人都能利用这些平台,创造新形态的工作。
但是作者依旧表达了他的担心,如果仅靠自由市场的运作,不能完全扭转大规模失业以及即将出现的大幅扩大的贫富差距。我们不能只靠民营企业市场的人机协作机制,还必须通过服务业的影响力投资和政策,推动更广泛的文化价值转变,为这些产业注入新的活力。
3.影响力投资
作为风险投资人,作者认为有种新形式的“影响力投资”在应对人工智能时代的社会冲击方面,可以起到重要作用。
他希望未来能出现这样一个风投生态体系:将创造“人性服务”岗位本身视为美好的事业,同时也投资相关的产业,将资金引入能吸纳大量劳动力的、以人为本的服务项目中,如产后护理哺乳顾问、青少年运动教练、口述历史收集人、国家公园向导或者老年人陪聊等。
创造这样的生态体系,需要参与其中的风险投资人转变心态。作者希望传统风险投资人可以由资历更老的、希望改变世界的风投高管带领,带动年轻的、希望做些“慈善”或“公益”工作的年轻风险投资人共同参与进来。如果各行各业的企业都能参与进来,主动承担社会责任,作者相信我们能够编织一张新的就业“安全网”,建立充满关怀和人性的社会。
4.“社会贡献津贴”:护理、服务和接受培训
对于那些把时间和精力投入慈善、使社会更有人情味和创造力的人,(其中包括三大类活动:护理工作、社群服务和接受培训),政府可以付给他们一笔还不错的报酬,这种津贴将成为新型社会契约的支柱。
具体来说,对于上述三类工作的全职和兼职者,应给予不同的薪资。护理工作包括对孩子一对一的教育、陪伴老人、帮助患病的朋友或家人,或者帮助其他精神、身体有缺陷的人提升生活品质。服务工作包括非营利组织的大部分工作,以及志愿者做的事,如治理环境、主持课后活动、做公园导游、收集各个社区长者口述的历史等。在接受培训方面,人工智能时代的职业教育既包含专业工作技能培训,也包含将爱好转变为职业的课程。
作者特别要强调的是,规定要求领取“社会贡献津贴”的人从事这些工作,并不是要通过强制手段左右他们的日常活动,要保护好人类的多样性。
实施这样政策需要大量的财政收入,作者建议循序渐进:不直接全方位地推行上述的“社会贡献津贴”方案,而先试着减轻工作流失对社会造成的冲击,再逐步编写新社会契约。
。












网友评论