1. 题目列表
- POJ2388(排序,水题)
- POJ2299(求逆序对,归并排序、树状数组、线段树)
2. POJ2299——Ultra-QuickSort
2.1 题目描述
Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
<center>9 1 0 5 4 ,</center>
Ultra-QuickSort produces the output
<center>0 1 4 5 9 .</center>
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
2.2 解决思路
数组的长度达到500,000,使用冒泡排序记录交换次数明显超时。
这里参考三种解法:
a. 归并排序
归并排序的思路:
给出一个无序数组,要求求出冒泡排序的交换次数,
时间复杂度为O(n^{2})的原始冒泡排序会超时。
该题目的本质是求数组的逆序对个数,
如在9 1 0 5 4数组中,逆序对(9,1),(9,0),(9,5),(9,4),(1,0),(5,4)共6个,
所以共需交换6次。
解法1:归并排序。
对于原始数组:2 3 5 9 1 4 6 8
两两分组在某一次归并过程中:
a1: 2 3 5 9
a2: 1 4 6 8
由于a2一定在a1的后面,所以在分别比较a1和a2的数的顺序时,如果出现逆序,
则记录结果为:ans += l2 - i。如比较2和1时,由于2>1,所以为逆序,此时冒泡交换的次数
为a1中2后面的个数(包括2本身)
b. 线段树
c. 树状数组
网友评论