美文网首页
31 Pandas使用explode实现一行变多行统计

31 Pandas使用explode实现一行变多行统计

作者: Viterbi | 来源:发表于2022-11-20 21:50 被阅读0次

31 Pandas使用explode实现一行变多行统计

解决实际问题:一个字段包含多个值,怎样将这个值拆分成多行,然后实现统计 比如:一个电影有多个分类、一个人有多个喜好,需要按分类、喜好做统计

1、读取数据

import pandas as pd

df = pd.read_csv(
    "./datas/movielens-1m/movies.dat",
    header=None,
    names="MovieID::Title::Genres".split("::"),
    sep="::",
    engine="python"
)

df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
MovieID Title Genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy

问题:怎样实现这样的统计,每个题材有多少部电影?

解决思路:

  • 将Genres按照分隔符|拆分
  • 按Genres拆分成多行
  • 统计每个Genres下的电影数目

2、将Genres字段拆分成列表

df.info()

    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3883 entries, 0 to 3882
    Data columns (total 3 columns):
    MovieID    3883 non-null int64
    Title      3883 non-null object
    Genres     3883 non-null object
    dtypes: int64(1), object(2)
    memory usage: 91.1+ KB
    


# 当前的Genres字段是字符串类型
type(df.iloc[0]["Genres"])


    str



# 新增一列
df["Genre"] = df["Genres"].map(lambda x:x.split("|"))

df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
MovieID Title Genres Genre
0 1 Toy Story (1995) Animation|Children's|Comedy [Animation, Children's, Comedy]
1 2 Jumanji (1995) Adventure|Children's|Fantasy [Adventure, Children's, Fantasy]
2 3 Grumpier Old Men (1995) Comedy|Romance [Comedy, Romance]
3 4 Waiting to Exhale (1995) Comedy|Drama [Comedy, Drama]
4 5 Father of the Bride Part II (1995) Comedy [Comedy]
# Genre的类型是列表
print(df["Genre"][0])
print(type(df["Genre"][0]))

    ['Animation', "Children's", 'Comedy']
    <class 'list'>
    
df.info()


    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3883 entries, 0 to 3882
    Data columns (total 4 columns):
    MovieID    3883 non-null int64
    Title      3883 non-null object
    Genres     3883 non-null object
    Genre      3883 non-null object
    dtypes: int64(1), object(3)
    memory usage: 121.5+ KB

3、使用explode将一行拆分成多行

语法:pandas.DataFrame.explode(column) 将dataframe的一个list-like的元素按行复制,index索引随之复制

df_new = df.explode("Genre")

df_new.head(10)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
MovieID Title Genres Genre
0 1 Toy Story (1995) Animation|Children's|Comedy Animation
0 1 Toy Story (1995) Animation|Children's|Comedy Children's
0 1 Toy Story (1995) Animation|Children's|Comedy Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy Adventure
1 2 Jumanji (1995) Adventure|Children's|Fantasy Children's
1 2 Jumanji (1995) Adventure|Children's|Fantasy Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance Comedy
2 3 Grumpier Old Men (1995) Comedy|Romance Romance
3 4 Waiting to Exhale (1995) Comedy|Drama Comedy
3 4 Waiting to Exhale (1995) Comedy|Drama Drama

4、实现拆分后的题材的统计

%matplotlib inline
df_new["Genre"].value_counts().plot.bar()

    <matplotlib.axes._subplots.AxesSubplot at 0x23d73917cc8>

本文使用 文章同步助手 同步

相关文章

网友评论

      本文标题:31 Pandas使用explode实现一行变多行统计

      本文链接:https://www.haomeiwen.com/subject/yxxjtdtx.html