1. 基本用法
weak 是弱引用。用 weak 修饰或者所引用对象的计数不会 +1,并且会在引用的对象被释放的时候自动被设置为 nil,大大避免了野指针访问坏内存引起崩溃的情况,另外 weak 还可以用于解决循环引用。
2. 原理概括
weak 表其实是一个 hash(哈希)表,Key : 所引用对象的地址,Value : weak 指针的地址数组(这个地址的值是指向对象的指针的地址)。
weak 的底层实现的原理是什么?
runtime 维护了一个 weak 表,用于存储指向某个对象的所有 weak 指针。
为什么 value 是数组?
因为一个对象可能被多个弱引用指针指向。
3. 实现步骤
weak 的实现原理可概括三步:
①、初始化时:runtime 会调用 objc_initWeak 函数,初始化一个新的 weak 指针指向对象的地址。

②、添加引用时:objc_initWeak 函数会调用 objc_storeWeak() 函数, objc_storeWeak() 的作用是更新指针指向,创建对应的弱引用表。

③、释放时,调用 clearDeallocating 函数。clearDeallocating 函数首先根据对象地址获取所有 weak 指针地址的数组,然后遍历这个数组把其中的数据设为 nil,最后把这个 entry 从 weak 表中删除,最后清理对象的记录。
4. 详细过程
1、初始化时:runtime 会调用 objc_initWeak 函数,objc_initWeak 函数会初始化一个新的 weak 指针指向对象的地址。
NSObject * obj = [[NSObject alloc] init];
id __weak obj1 = obj;
当我们初始化一个 weak 变量时,runtime 会调用 NSObject.mm 中的 objc_initWeak 函数。
这个函数在 Clang 中的声明如下:
id objc_initWeak(id *object, id value);
而对于 objc_initWeak() 方法的实现如下:
id objc_initWeak(id *location, id newObj)
{
// 查看对象实例是否有效,无效对象直接导致指针释放
if (!newObj) {
*location = nil;
return nil;
}
// 这里传递了三个 bool 数值
// 使用 template 进行常量参数传递是为了优化性能
return storeWeak false/*old*/, true/*new*/, true/*crash*/>(location, (objc_object*)newObj);
}
这里先判断了其指针指向的类对象是否有效,无效直接释放返回,不再往深层调用函数。否则,object 将通过 bjc_storeWeak 函数被注册为一个指向 value 的 __weak 对象,而这事应该是 objc_storeWeak 函数干的。可以看出,这个函数仅仅是一个深层函数的调用入口,而一般的入口函数中,都会做一些简单的判断(例如 objc_msgSend 中的缓存判断)。
注意:objc_initWeak 函数有一个前提条件:就是 object 必须是一个没有被注册为 __weak 对象的有效指针。而 value 则可以是 null,或者指向一个有效的对象。
2、添加引用时:objc_initWeak 函数会调用 objc_storeWeak() 函数,objc_storeWeak() 的作用是更新指针指向,创建对应的弱引用表。
objc_storeWeak 的函数声明如下:
id objc_storeWeak(id *location, id value);
objc_storeWeak() 的具体实现,请参考 weak弱引用实现的方式。
objc_storeWeak() 的具体实现如下:
// HaveOld: true - 变量有值
// false - 需要被及时清理,当前值可能为 nil
// HaveNew: true - 需要被分配的新值,当前值可能为 nil
// false - 不需要分配新值
// CrashIfDeallocating: true - 说明 newObj 已经释放或者 newObj 不支持弱引用,该过程需要暂停
// false - 用 nil 替代存储
template bool HaveOld, bool HaveNew, bool CrashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj) {
// 该过程用来更新弱引用指针的指向
// 初始化 previouslyInitializedClass 指针
Class previouslyInitializedClass = nil;
id oldObj;
// 声明两个 SideTable
// ① 新旧散列创建
SideTable *oldTable;
SideTable *newTable;
// 获得新值和旧值的锁存位置(用地址作为唯一标示)
// 通过地址来建立索引标志,防止桶重复
// 下面指向的操作会改变旧值
retry:
if (HaveOld) {
// 更改指针,获得以 oldObj 为索引所存储的值地址
oldObj = *location;
oldTable = &SideTables()[oldObj];
}
else {
oldTable = nil;
}
if (HaveNew) {
// 更改新值指针,获得以 newObj 为索引所存储的值地址
newTable = &SideTables()[newObj];
}
else {
newTable = nil;
}
// 加锁操作,防止多线程中竞争冲突
SideTable::lockTwoHaveOld, HaveNew>(oldTable, newTable);
// 避免线程冲突重处理
// location 应该与 oldObj 保持一致,如果不同,说明当前的 location 已经处理过 oldObj 可是又被其他线程所修改
if (HaveOld && *location != oldObj) {
SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);
goto retry;
}
// 防止弱引用间死锁
// 并且通过 +initialize 初始化构造器保证所有弱引用的 isa 非空指向
if (HaveNew && newObj) {
// 获得新对象的 isa 指针
Class cls = newObj->getIsa();
// 判断 isa 非空且已经初始化
if (cls != previouslyInitializedClass && !((objc_class *)cls)->isInitialized()) {
// 解锁
SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);
// 对其 isa 指针进行初始化
_class_initialize(_class_getNonMetaClass(cls, (id)newObj));
// 如果该类已经完成执行 +initialize 方法是最理想情况
// 如果该类 +initialize 在线程中
// 例如 +initialize 正在调用 storeWeak 方法
// 需要手动对其增加保护策略,并设置 previouslyInitializedClass 指针进行标记
previouslyInitializedClass = cls;
// 重新尝试
goto retry;
}
}
// ② 清除旧值
if (HaveOld) {
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// ③ 分配新值
if (HaveNew) {
newObj = (objc_object *)weak_register_no_lock(&newTable->weak_table, (id)newObj, location, CrashIfDeallocating);
// 如果弱引用被释放 weak_register_no_lock 方法返回 nil
// 在引用计数表中设置若引用标记位
if (newObj && !newObj->isTaggedPointer()) {
// 弱引用位初始化操作
// 引用计数那张散列表的weak引用对象的引用计数中标识为weak引用
newObj->setWeaklyReferenced_nolock();
}
// 之前不要设置 location 对象,这里需要更改指针指向
*location = (id)newObj;
}
else {
// 没有新值,则无需更改
}
SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);
return (id)newObj;
}
撇开源码中各种锁操作,来看看这段代码都做了些什么。
①、SideTable
SideTable 这个结构体,我给它起名引用计数和弱引用依赖表,因为它主要用于管理对象的引用计数和 weak 表。在 NSObject.mm 中声明其数据结构:
struct SideTable {
// 保证原子操作的自旋锁
spinlock_t slock;
// 引用计数的 hash 表
RefcountMap refcnts;
// weak 引用全局 hash 表
weak_table_t weak_table;
}
对于 slock 和 refcnts 两个成员不用多说,第一个是为了防止竞争选择的自旋锁,第二个是协助对象的 isa 指针的 extra_rc 共同引用计数的变量(对于对象结果,在今后的文中提到)。这里主要看 weak 全局 hash 表的结构与作用。
②、weak表
weak 表是一个弱引用表,实现为一个 weak_table_t 结构体,存储了某个对象相关的所有的弱引用信息。其定义如下(具体定义在 objc-weak.h 中):
struct weak_table_t {
// 保存了所有指向指定对象的 weak 指针
weak_entry_t * weak_entries;
// 存储空间
size_t num_entries;
// 参与判断引用计数辅助量
uintptr_t mask;
// hash key 最大偏移值
uintptr_t max_hash_displacement;
};
这是一个全局弱引用 hash 表。使用不定类型对象的地址作为 key,用 weak_entry_t 类型结构体对象作为 value 。其中的 weak_entries 成员,从字面意思上看,即为弱引用表入口。其实现也是这样的。
其中 weak_entry_t 是存储在弱引用表中的一个内部结构体,它负责维护和存储指向一个对象的所有弱引用 hash 表。其定义如下:
typedef objc_object ** weak_referrer_t;
struct weak_entry_t {
DisguisedPtr<objc_object> referent;
union {
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line : 1;
uintptr_t num_refs : PTR_MINUS_1;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line=0 is LSB of one of these (don't care which)
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
}
}
在 weak_entry_t 的结构中,DisguisedPtr referent 是对泛型对象的指针做了一个封装,通过这个泛型类来解决内存泄漏的问题。从注释中写 out_of_line 成员为最低有效位,当其为 0 的时候, weak_referrer_t 成员将扩展为多行静态 hash table。其实其中的 weak_referrer_t 是二维 objc_object 的别名,通过一个二维指针地址偏移,用下标作为 hash 的 key,做成了一个弱引用散列。
那么在有效位未生效的时候,out_of_line、num_refs、mask、max_hash_displacement 有什么作用?以下是笔者自身的猜测:
out_of_line:最低有效位,也是标志位。当标志位 0 时,增加引用表指针纬度。
num_refs:引用数值。这里记录弱引用表中引用有效数字,因为弱引用表使用的是静态 hash 结构,所以需要使用变量来记录数目。
mask:计数辅助量。
max_hash_displacement:hash 元素上限阀值。
其实 out_of_line 的值通常情况下是等于零的,所以弱引用表总是一个 objc_objective 指针二维数组。一维 objc_objective 指针可构成一张弱引用散列表,通过第三纬度实现了多张散列表,并且表数量为 WEAK_INLINE_COUNT 。
总结一下 StripedMap[] : StripedMap 是一个模板类,在这个类中有一个 array 成员,用来存储 PaddedT 对象,并且其中对于 [] 符的重载定义中,会返回这个 PaddedT 的 value 成员,这个 value 就是我们传入的 T 泛型成员,也就是 SideTable 对象。在 array 的下标中,这里使用了 indexForPointer 方法通过位运算计算下标,实现了静态的 Hash Table。而在 weak_table 中,其成员 weak_entry 会将传入对象的地址加以封装起来,并且其中也有访问全局弱引用表的入口。

旧对象解除注册操作 weak_unregister_no_lock
该方法主要作用是将旧对象在 weak_table 中接触 weak 指针的对应绑定。根据函数名,称之为解除注册操作。从源码中,可以知道其功能就是从 weak_table 中接触 weak 指针的绑定。而其中的遍历查询,就是针对于 weak_entry 中的多张弱引用散列表。
新对象添加注册操作 weak_register_no_lock
这一步与上一步相反,通过 weak_register_no_lock 函数把新的对象进行注册操作,完成与对应的弱引用表进行绑定操作。
初始化弱引用对象流程一览
弱引用的初始化,从上文的分析中可以看出,主要的操作部分就在弱引用表的取键、查询散列、创建弱引用表等操作,可以总结出如下的流程图:

这个图中省略了很多情况的判断,但是当声明一个 weak 会调用上图中的这些方法。当然,storeWeak 方法不仅仅用在 weak 的声明中,在 class 内部的操作中也会常常通过该方法来对 weak 对象进行操作。
3、释放时,调用 clearDeallocating 函数。clearDeallocating 函数首先根据对象地址获取所有 weak 指针地址的数组,然后遍历这个数组把其中的数据设为 nil,最后把这个 entry 从weak 表中删除,最后清理对象的记录。
当 weak 引用指向的对象被释放时,又是如何去处理 weak 指针的呢?当释放对象时,其基本流程如下:
1、调用 objc_release
2、因为对象的引用计数为 0,所以执行 dealloc
3、在 dealloc 中,调用了_objc_rootDealloc 函数
4、在 _objc_rootDealloc 中,调用了 object_dispose 函数
5、调用 objc_destructInstance
6、最后调用 objc_clear_deallocating,详细过程如下:a. 从 weak 表中获取废弃对象的地址为键值的记录
b. 将包含在记录中的所有附有 weak 修饰符变量的地址,赋值为 nil
c. 将 weak 表中该记录删除
d. 从引用计数表中删除废弃对象的地址为键值的记录
重点看对象被释放时调用的 objc_clear_deallocating 函数。该函数实现如下:
void objc_clear_deallocating(id obj)
{
assert(obj);
assert(!UseGC);
if (obj->isTaggedPointer()) return;
obj->clearDeallocating();
}
也就是调用了 clearDeallocating(),继续追踪可以发现,它最终是使用了迭代器来取 weak 表的 value,然后调用 weak_clear_no_lock,然后查找对应的 value,将该 weak 指针置空,weak_clear_no_lock 函数的实现如下:
/**
* Called by dealloc; nils out all weak pointers that point to the
* provided object so that they can no longer be used.
*
* @param weak_table
* @param referent The object being deallocated.
*/
void weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
{
objc_object *referent = (objc_object *)referent_id;
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) {
/// XXX shouldn't happen, but does with mismatched CF/objc
//printf("XXX no entry for clear deallocating %p\n", referent);
return;
}
// zero out references
weak_referrer_t *referrers;
size_t count;
if (entry->out_of_line) {
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}
else {
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[i];
if (referrer) {
if (*referrer == referent) {
*referrer = nil;
}
else if (*referrer) {
_objc_inform("__weak variable at %p holds %p instead of %p. "
"This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n", referrer, (void*)*referrer, (void*)referent);
objc_weak_error();
}
}
}
weak_entry_remove(weak_table, entry);
}
简单来说,这个方法首先根据对象地址获取所有 Weak 指针地址的数组,然后遍历这个数组,把每个地址存储的数据设为 nil ,最后把这个 key-value entry 从 Weak 表中删除。
注意:
1、从实现中可以看出,Weak 指针的使用涉及到 Hash 表的增删改查,存在一定的性能开销。
2、使用 Weak 指针的时候,应首先获取一个 Strong 指针再使用。倒不是为了防止在使用过程中对象被回收,形成野指针。这个不用担心,因为你使用了 Weak 指针,对象就会被加入到 autoreleasepool 中,可以放心使用。但是要注意的是,如果在一个代码块中频繁使用 Weak 指针,还是应首先获取一个 Strong 指针,否则这个对象会被一次又一次的加入 autoreleasepool 中,也存在一定的性能开销。
5. 拓展补充
weak、__unsafe_unretained、unowned 与 assign 区别
- __unsafe_unretained: 不会对对象进行 retain,当对象销毁时,会依然指向之前的内存空间(野指针)
- weak: 不会对对象进行 retain,当对象销毁时,会自动置为 nil
- assign: 实质与__unsafe_unretained 等同
- unsafe_unretained 也可以修饰代表基础数据类型的 property,weak 不能修饰基础数据类型的 property。
- __unsafe_unretained 与 weak 比较,使用 weak 是有代价的,因为通过上面的原理可知,__weak 需要检查对象是否已经消亡,而为了知道是否已经消亡,自然也需要一些信息去跟踪对象的使用情况。也正因此,__unsafe_unretained 比 __weak 快,所以当明确知道对象的生命期时,选择 __unsafe_unretained 会有一些性能提升,这种性能提升是很微小的。但当很清楚的情况下,__unsafe_unretained 也是安全的,自然能快一点是一点。而当情况不确定的时候,应该优先选用 __weak 。
- unowned 使用在 Swift 中,也会分 weak 和 unowned。unowned 的含义跟 __unsafe_unretained 差不多。假如很明确的知道对象的生命期,也可以选择 unowned。
6. 学习文章
weak 弱引用的实现方式
iOS 底层解析weak的实现原理(包含weak对象的初始化,引用,释放的分析)
iOS weak 的底层实现
weak 的生命周期:具体实现方法
网友评论